Compartir a través de


ThreadPool.GetMaxThreads(Int32, Int32) Método

Definición

Recupera el número de solicitudes al grupo de subprocesos que pueden estar activas al mismo tiempo. Todas las solicitudes que pasen de ese número permanecen en la cola hasta que haya disponibles subprocesos de grupo de subprocesos.

public:
 static void GetMaxThreads([Runtime::InteropServices::Out] int % workerThreads, [Runtime::InteropServices::Out] int % completionPortThreads);
public static void GetMaxThreads (out int workerThreads, out int completionPortThreads);
static member GetMaxThreads : int * int -> unit
Public Shared Sub GetMaxThreads (ByRef workerThreads As Integer, ByRef completionPortThreads As Integer)

Parámetros

workerThreads
Int32

Número máximo de subprocesos de trabajo en el grupo de subprocesos.

completionPortThreads
Int32

Número máximo de subprocesos de E/S asincrónicos en el grupo de subprocesos.

Ejemplos

En el ejemplo de código siguiente se muestra cómo recuperar un recuento del número máximo y disponible de subprocesos en el grupo de subprocesos. Un elemento de trabajo se pone en cola que usa FileStream para escribir de forma asincrónica en dos archivos. Los métodos de devolución de llamada tienen tiempo de superposición. Un subproceso de trabajo controla el elemento de trabajo y, según la velocidad y el número de procesadores del equipo, uno o dos subprocesos de puerto de finalización controlan las operaciones de escritura.

using namespace System;
using namespace System::IO;
using namespace System::Security::Permissions;
using namespace System::Threading;

ref class ThreadPoolTest
{
private:

   // Maintains state information to be passed to EndWriteCallback.
   // This information allows the callback to end the asynchronous
   // write operation and signal when it is finished.
   ref class State
   {
   public:
      FileStream^ fStream;
      AutoResetEvent^ autoEvent;
      State( FileStream^ fStream, AutoResetEvent^ autoEvent )
      {
         this->fStream = fStream;
         this->autoEvent = autoEvent;
      }

   };


public:
   ThreadPoolTest(){}

   static void EndWriteCallback( IAsyncResult^ asyncResult )
   {
      Console::WriteLine( "Starting EndWriteCallback." );
      State^ stateInfo = dynamic_cast<State^>(asyncResult->AsyncState);
      int workerThreads;
      int portThreads;
      try
      {
         ThreadPool::GetAvailableThreads( workerThreads, portThreads );
         Console::WriteLine( "\nAvailable worker threads: \t{0}"
         "\nAvailable completion port threads: {1}\n", workerThreads.ToString(), portThreads.ToString() );
         stateInfo->fStream->EndWrite( asyncResult );
         
         // Sleep so the other thread has a chance to run
         // before the current thread ends.
         Thread::Sleep( 1500 );
      }
      catch ( Exception^ e ) 
      {
      }
      finally
      {
         
         // Signal that the current thread is finished.
         stateInfo->autoEvent->Set();
         Console::WriteLine( "Ending EndWriteCallback." );
      }

   }

   static void WorkItemMethod( Object^ mainEvent )
   {
      Console::WriteLine( "\nStarting WorkItem.\n" );
      AutoResetEvent^ autoEvent = gcnew AutoResetEvent( false );
      
      // Create some data.
      const int ArraySize = 10000;
      const int BufferSize = 1000;
      array<Byte>^byteArray = gcnew array<Byte>(ArraySize);
      (gcnew Random)->NextBytes( byteArray );
      
      // Create two files and two State objects. 
      FileStream^ fileWriter1 = gcnew FileStream(  "C:\\Test1@##.dat",FileMode::Create,FileAccess::ReadWrite,FileShare::ReadWrite,BufferSize,true );
      FileStream^ fileWriter2 = gcnew FileStream(  "C:\\Test2@##.dat",FileMode::Create,FileAccess::ReadWrite,FileShare::ReadWrite,BufferSize,true );
      State^ stateInfo1 = gcnew State( fileWriter1,autoEvent );
      State^ stateInfo2 = gcnew State( fileWriter2,autoEvent );
      
      // Asynchronously write to the files.
      fileWriter1->BeginWrite( byteArray, 0, byteArray->Length, gcnew AsyncCallback( &ThreadPoolTest::EndWriteCallback ), stateInfo1 );
      fileWriter2->BeginWrite( byteArray, 0, byteArray->Length, gcnew AsyncCallback( &ThreadPoolTest::EndWriteCallback ), stateInfo2 );
      
      // Wait for each callback to finish.
      autoEvent->WaitOne();
      autoEvent->WaitOne();
      fileWriter1->Close();
      fileWriter2->Close();
      Console::WriteLine( "\nEnding WorkItem.\n" );
      
      // Signal Main that the work item is finished.
      dynamic_cast<AutoResetEvent^>(mainEvent)->Set();
   }

};

int main()
{
   AutoResetEvent^ mainEvent = gcnew AutoResetEvent( false );
   int workerThreads;
   int portThreads;
   ThreadPool::GetMaxThreads( workerThreads, portThreads );
   Console::WriteLine( "\nMaximum worker threads: \t{0}"
   "\nMaximum completion port threads: {1}", workerThreads.ToString(), portThreads.ToString() );
   ThreadPool::GetAvailableThreads( workerThreads, portThreads );
   Console::WriteLine( "\nAvailable worker threads: \t{0}"
   "\nAvailable completion port threads: {1}\n", workerThreads.ToString(), portThreads.ToString() );
   ThreadPool::QueueUserWorkItem( gcnew WaitCallback( &ThreadPoolTest::WorkItemMethod ), mainEvent );
   
   // Since ThreadPool threads are background threads, 
   // wait for the work item to signal before ending main().
   mainEvent->WaitOne( 5000, false );
}
using System;
using System.IO;
using System.Security.Permissions;
using System.Threading;

class Test
{
    static void Main()
    {
        AutoResetEvent mainEvent = new AutoResetEvent(false);
        int workerThreads;
        int portThreads;

        ThreadPool.GetMaxThreads(out workerThreads, out portThreads);
        Console.WriteLine("\nMaximum worker threads: \t{0}" +
            "\nMaximum completion port threads: {1}",
            workerThreads, portThreads);

        ThreadPool.GetAvailableThreads(out workerThreads, 
            out portThreads);
        Console.WriteLine("\nAvailable worker threads: \t{0}" +
            "\nAvailable completion port threads: {1}\n",
            workerThreads, portThreads);

        ThreadPool.QueueUserWorkItem(new 
            WaitCallback(ThreadPoolTest.WorkItemMethod), mainEvent);
           
        // Since ThreadPool threads are background threads, 
        // wait for the work item to signal before ending Main.
        mainEvent.WaitOne(5000, false);
    }
}

class ThreadPoolTest
{
    // Maintains state information to be passed to EndWriteCallback.
    // This information allows the callback to end the asynchronous
    // write operation and signal when it is finished.
    class State
    {
        public FileStream     fStream;
        public AutoResetEvent autoEvent;

        public State(FileStream fStream, AutoResetEvent autoEvent)
        {
            this.fStream   = fStream;
            this.autoEvent = autoEvent;
        }
    }

    ThreadPoolTest() {}

    public static void WorkItemMethod(object mainEvent)
    {
        Console.WriteLine("\nStarting WorkItem.\n");
        AutoResetEvent autoEvent = new AutoResetEvent(false);

        // Create some data.
        const int ArraySize  = 10000;
        const int BufferSize =  1000;
        byte[] byteArray = new Byte[ArraySize];
        new Random().NextBytes(byteArray);

        // Create two files and two State objects. 
        FileStream fileWriter1 = 
            new FileStream(@"C:\Test1@##.dat", FileMode.Create, 
            FileAccess.ReadWrite, FileShare.ReadWrite, 
            BufferSize, true);
        FileStream fileWriter2 = 
            new FileStream(@"C:\Test2@##.dat", FileMode.Create, 
            FileAccess.ReadWrite, FileShare.ReadWrite, 
            BufferSize, true);
        State stateInfo1 = new State(fileWriter1, autoEvent);
        State stateInfo2 = new State(fileWriter2, autoEvent);

        // Asynchronously write to the files.
        fileWriter1.BeginWrite(byteArray, 0, byteArray.Length, 
            new AsyncCallback(EndWriteCallback), stateInfo1);
        fileWriter2.BeginWrite(byteArray, 0, byteArray.Length, 
            new AsyncCallback(EndWriteCallback), stateInfo2);

        // Wait for the callbacks to signal.
        autoEvent.WaitOne();
        autoEvent.WaitOne();

        fileWriter1.Close();
        fileWriter2.Close();
        Console.WriteLine("\nEnding WorkItem.\n");

        // Signal Main that the work item is finished.
        ((AutoResetEvent)mainEvent).Set();
    }

    static void EndWriteCallback(IAsyncResult asyncResult)
    {
        Console.WriteLine("Starting EndWriteCallback.");

        State stateInfo = (State)asyncResult.AsyncState;
        int workerThreads;
        int portThreads;
        try
        {
            ThreadPool.GetAvailableThreads(out workerThreads, 
                out portThreads);
            Console.WriteLine("\nAvailable worker threads: \t{0}" +
                "\nAvailable completion port threads: {1}\n",
                workerThreads, portThreads);

            stateInfo.fStream.EndWrite(asyncResult);

            // Sleep so the other thread has a chance to run
            // before the current thread ends.
            Thread.Sleep(1500);
        }
        finally
        {
            // Signal that the current thread is finished.
            stateInfo.autoEvent.Set();
            Console.WriteLine("Ending EndWriteCallback.");
        }
    }
}
Imports System.IO
Imports System.Security.Permissions
Imports System.Threading

Public Class Example
    Shared Sub Main()
        Dim mainEvent As New AutoResetEvent(False)
        Dim workerThreads As Integer 
        Dim portThreads As Integer 

        ThreadPool.GetMaxThreads(workerThreads, portThreads)
        Console.WriteLine(vbCrLf & "Maximum worker threads: " & _
            vbTab & "{0}" & vbCrLf & "Maximum completion port " & _
            "threads: {1}", workerThreads, portThreads)

        ThreadPool.GetAvailableThreads(workerThreads, portThreads)
        Console.WriteLine(vbCrLf & "Available worker threads: " & _
            vbTab & "{0}" & vbCrLf & "Available completion port " & _
            "threads: {1}" & vbCrLf, workerThreads, portThreads)

        ThreadPool.QueueUserWorkItem(AddressOf _
            ThreadPoolTest.WorkItemMethod, mainEvent)
           
        ' Since ThreadPool threads are background threads, 
        ' wait for the work item to signal before ending Main.
        mainEvent.WaitOne(5000, False)
    End Sub

End Class

Public Class ThreadPoolTest

    ' Maintains state information to be passed to EndWriteCallback.
    ' This information allows the callback to end the asynchronous
    ' write operation and signal when it is finished.
    Class State
        Public fStream As FileStream
        Public autoEvent As AutoResetEvent

        Public Sub New(aFileStream As FileStream, anEvent As AutoResetEvent)
            fStream   = aFileStream
            autoEvent = anEvent
        End Sub
    End Class   
    
    Private Sub New
    End Sub

    Shared Sub WorkItemMethod(mainEvent As Object)
    
        Console.WriteLine(vbCrLf & "Starting WorkItem." & vbCrLf)
        Dim autoEvent As New AutoResetEvent(False)

        ' Create some data.
        Const ArraySize As Integer  = 10000
        Const BufferSize As Integer =  1000
        Dim byteArray As Byte() = New Byte(ArraySize){}
        Dim randomGenerator As New Random()
        randomGenerator.NextBytes(byteArray)

        ' Create two files and two State objects. 
        Dim fileWriter1 As FileStream = _
            New FileStream("C:\Test1111.dat", FileMode.Create, _
            FileAccess.ReadWrite, FileShare.ReadWrite, _
            BufferSize, True)
        Dim fileWriter2 As FileStream = _
            New FileStream("C:\Test2222.dat", FileMode.Create, _
            FileAccess.ReadWrite, FileShare.ReadWrite, _
            BufferSize, True)
        Dim stateInfo1 As New State(fileWriter1, autoEvent)
        Dim stateInfo2 As New State(fileWriter2, autoEvent)

        ' Asynchronously write to the files.
        fileWriter1.BeginWrite(byteArray, 0, byteArray.Length, _
            AddressOf EndWriteCallback, stateInfo1)
        fileWriter2.BeginWrite(byteArray, 0, byteArray.Length, _
            AddressOf EndWriteCallback, stateInfo2)

        ' Wait for the callbacks to signal.
        autoEvent.WaitOne()
        autoEvent.WaitOne()

        fileWriter1.Close()
        fileWriter2.Close()
        Console.WriteLine(vbCrLf & "Ending WorkItem." & vbCrLf)

        ' Signal Main that the work item is finished.
        DirectCast(mainEvent, AutoResetEvent).Set()
    
    End Sub

    Shared Sub EndWriteCallback(asyncResult As IAsyncResult)
        Console.WriteLine("Starting EndWriteCallback.")

        Dim stateInfo As State = _
            DirectCast(asyncResult.AsyncState, State)
        Dim workerThreads As Integer 
        Dim portThreads As Integer 
        Try
            ThreadPool.GetAvailableThreads(workerThreads, portThreads)
            Console.WriteLine(vbCrLf & "Available worker " & _
                "threads:" & vbTab & "{0}" & vbCrLf & "Available " & _
                "completion port threads: {1}" & vbCrLf, _
                workerThreads, portThreads)

            stateInfo.fStream.EndWrite(asyncResult)

            ' Sleep so the other thread has a chance to run
            ' before the current thread ends.
            Thread.Sleep(1500)
        Finally
        
            ' Signal that the current thread is finished.
            stateInfo.autoEvent.Set()
            Console.WriteLine("Ending EndWriteCallback.")
        End Try
    
    End Sub
End Class

Comentarios

Cuando GetMaxThreads devuelve, la variable especificada por workerThreads contiene el número máximo de subprocesos de trabajo permitidos en el grupo de subprocesos y la variable especificada por completionPortThreads contiene el número máximo de subprocesos de E/S asincrónicos permitidos en el grupo de subprocesos.

Puede usar el GetAvailableThreads método para determinar el número real de subprocesos del grupo de subprocesos en un momento dado.

Puede usar SetMaxThreads para establecer el número máximo de subprocesos de trabajo y subprocesos de E/S asincrónicos en el grupo de subprocesos.

Puede poner en cola tantas solicitudes de grupo de subprocesos como permita la memoria del sistema. Si hay más solicitudes que los subprocesos del grupo de subprocesos, las solicitudes adicionales permanecen en cola hasta que los subprocesos del grupo de subprocesos estén disponibles.

Se aplica a

Consulte también