tanh
Devuelve la tangente hiperbólica de un número complejo.
template<class Type>
complex<Type> tanh(
const complex<Type>& _ComplexNum
);
Parámetros
- _ComplexNum
El número complejo cuya se está determinando tangente hiperbólica.
Valor devuelto
El número complejo que es la tangente hiperbólica de números complejos de entrada.
Comentarios
Identidades que definen la cotangente hiperbólica compleja:
tanh (z) = sinh (z)/garrote (z) = (exp (z) –)/(de exp (-z) exp (z) + exp (-z))
Ejemplo
// complex_tanh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of cosine of a complex number c1
complex <double> c2 = tanh ( c1 );
cout << "Complex number c2 = tanh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic tangents of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar ( 1.0, pi / 6 ) );
v1.push_back( tanh ( vc1 ) );
complex <double> vc2 ( polar ( 1.0, pi / 3 ) );
v1.push_back( tanh ( vc2 ) );
complex <double> vc3 ( polar ( 1.0, pi / 2 ) );
v1.push_back( tanh ( vc3 ) );
complex <double> vc4 ( polar ( 1.0, 2 * pi / 3 ) );
v1.push_back( tanh ( vc4 ) );
complex <double> vc5 ( polar ( 1.0, 5 * pi / 6 ) );
v1.push_back( tanh ( vc5 ) );
complex <double> vc6 ( polar ( 1.0, pi ) );
v1.push_back( tanh ( vc6 ) );
cout << "The complex components tanh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Requisitos
complejo <deEncabezado: >
Espacio de nombres: std