Explorar el modelo de árbol de decisión (tutorial básico de minería de datos)
Se aplica a: SQL Server 2016 Preview
El algoritmo de árboles de decisión de Microsoft predice qué columnas influyen en la decisión de comprar una bicicleta en función de las columnas restantes del conjunto de entrenamiento.
El Microsoft Visor de árbol de decisión proporciona las siguientes fichas de exploración de modelos de minería de datos del árbol de decisión:
Árbol de decisión
Red de dependencias
Pestaña Árbol de decisión
En el árbol de decisión ficha, puede ver los árboles de decisión para cada atributo de predicción en el conjunto de datos.
En este caso, el modelo predice solo una columna, bicicleta, así que no hay un único árbol para ver. Si hubiera más árboles, podría usar la árbol para elegir otro árbol.
Al ver el TM_Decision_Tree modelo en el Visor de árbol de decisión, puede ver los atributos más importantes en el lado izquierdo del gráfico. "Más importantes" significa que estos atributos son los que más influyen en el resultado. Los atributos situados más abajo en el árbol (a la derecha del gráfico) tiene menos efecto.
En este ejemplo, la edad es el factor único más importante para predecir la compra de bicicletas. El modelo agrupa los clientes por edad y, a continuación, muestra el siguiente atributo más importante para cada grupo de edad. Por ejemplo, en el grupo de clientes de entre 34 y 40 años, el número de automóviles en propiedad es el factor de predicción más seguro después de la edad.
Para explorar el modelo en la pestaña Árbol de decisión
Seleccione la pestaña Visor de modelo de minería de datos en Diseñador de minería de datos.
De forma predeterminada, se abre el diseñador para el primer modelo que se agregó a la estructura, en este caso, TM_Decision_Tree.
Utilice los botones de lupa para ajustar el tamaño de presentación del árbol.
De manera predeterminada, el Visor de árboles de Microsoft solo muestra los primeros tres niveles del árbol. Si el árbol contiene menos de tres niveles, el visor mostrará solo los niveles existentes. Puede ver más niveles mediante la Mostrar nivel control deslizante o el expansión predeterminada lista.
Deslice Mostrar nivel hasta la cuarta barra.
Cambie el valor de la lista Fondo por 1.
Cambiando el fondo configuración, puede ver rápidamente el número de casos de cada nodo que tiene el valor de destino de 1 para [Bike Buyer]. Recuerde que en este escenario en concreto, cada caso representa un cliente. El valor 1 indica que el cliente compró anteriormente una bicicleta; el valor 0 indica que el cliente no ha comprado una bicicleta. Cuanto más oscuro sea el sombreado del nodo, mayor será el porcentaje de casos del nodo que tienen el valor de destino.
Coloque el cursor sobre el nodo todos los. Se mostrará información sobre herramientas con los siguientes datos:
Número total de casos
Número de casos de personas que no han comprado bicicletas
Número de casos de personas que han comprado bicicletas
Número de casos con valores que faltan para [Bike Buyer]
También puede colocar el cursor sobre cualquier nodo del árbol para ver la condición necesaria para alcanzar ese nodo desde el nodo anterior. También puede ver la misma información en el leyenda de minería de datos.
Haga clic en el nodo de Age > = 34 y 41 <. El histograma se muestra como una barra horizontal delgada a lo largo del nodo y representa la distribución de los clientes con este intervalo de edad que anteriormente compraron (rosa) o no compraron (azul) una bicicleta. El visor nos muestra que es probable que los clientes con edades comprendidas entre 34 y 40 años sin automóvil o con uno compren una bicicleta. Si vamos un poco más lejos, vemos que la probabilidad de comprar una bicicleta aumenta si el cliente tiene una edad comprendida entre 38 y 40 años.
Como habilitó la obtención de detalles cuando creó la estructura y el modelo, puede recuperar información detallada de los casos del modelo y de la estructura de minería de datos, incluidas las columnas que no se incluyeron en el modelo de minería de datos (por ejemplo, emailAddress y FirstName).
Para más información, vea Consultas de obtención de detalles (minería de datos).
Para obtener información detallada de los datos del caso
Haga clic en un nodo y seleccione obtener detalles a continuación, solo columnas de modelos.
Los detalles de cada caso de entrenamiento se muestran en formato de hoja de cálculo. Estos detalles proceden de la vista vTargetMail que seleccionó como la tabla de casos al generar la estructura de minería de datos.
Haga clic en un nodo y seleccione obtener detalles a continuación, columnas de modelo y estructura.
Se muestra la misma hoja de cálculo con las columnas de estructura anexadas al final.
Volver al principio
Pestaña Red de dependencias
El red de dependencias ficha muestra las relaciones entre los atributos que contribuyen a la capacidad de predicción del modelo de minería de datos. El visor Red de dependencias reafirma nuestra conclusión de que la edad y la región son factores importantes para predecir la compra de bicicletas.
Para explorar el modelo en la pestaña Red de dependencias
Haga clic en el bicicleta nodo para identificar sus dependencias.
El nodo central de la red de dependencias bicicleta, representa el atributo de predicción del modelo de minería de datos. En el gráfico se resaltan todos los nodos conectados que afectan al atributo de predicción.
Ajustar la todos los vínculos control deslizante para identificar el atributo más influyente.
Arrastrar hacia abajo el control deslizante, los atributos que tienen sólo un efecto débil en la columna [Bike Buyer] se quitan del gráfico. Ajustando el control deslizante, descubrirá que la edad y la región son los factores más importantes para predecir si alguien va a comprar una bicicleta.
Tareas relacionadas
Vea estos temas para explorar los datos con las demás clases de modelos.
Explorar el modelo de agrupación en clústeres ( Tutorial de minería de datos básicos y nº 41;
Explorar el modelo Bayes Naive ( Tutorial de minería de datos básicos y nº 41;
Siguiente tarea de la lección
Explorar el modelo de agrupación en clústeres ( Tutorial de minería de datos básicos y nº 41;
Vea también
Tareas y procedimientos del Visor de modelos de minería de datos
Pestaña Árbol de decisión (Visor de modelos de minería de datos)
Pestaña Red de dependencias (Visor de modelos de minería de datos)
Examinar un modelo usando el Visor de árboles de Microsoft