Nota
El acceso a esta página requiere autorización. Puede intentar iniciar sesión o cambiar directorios.
El acceso a esta página requiere autorización. Puede intentar cambiar los directorios.
Guía: Intérprete de código
Importante
Esta característica está en la fase candidata para lanzamiento. Las características de esta fase son casi completas y, por lo general, estables, aunque pueden someterse a pequeños refinamientos o optimizaciones antes de alcanzar la disponibilidad general completa.
Información general
En este ejemplo, exploraremos cómo usar la herramienta de intérprete de código de un OpenAIAssistantAgent
para completar tareas de análisis de datos. El enfoque se desglosará paso a paso para iluminar las partes clave del proceso de codificación. Como parte de la tarea, el agente generará respuestas de imagen y texto. Esto demostrará la versatilidad de esta herramienta para realizar análisis cuantitativos.
El streaming se usará para entregar las respuestas del agente. Esto proporcionará actualizaciones en tiempo real a medida que avanza la tarea.
Introducción
Antes de continuar con la implementación de funcionalidades, asegúrate de que el entorno de desarrollo esté totalmente preparado y configurado.
Empiece por crear un proyecto de consola. A continuación, incluya las siguientes referencias de paquete para asegurarse de que todas las dependencias necesarias están disponibles.
Para agregar dependencias de paquete desde la línea de comandos, use el dotnet
comando :
dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel
dotnet add package Microsoft.SemanticKernel.Agents.OpenAI --prerelease
Importante
Si administra paquetes NuGet en Visual Studio, asegúrese de que Include prerelease
está activado.
El archivo de proyecto (.csproj
) debe contener las definiciones siguientes PackageReference
:
<ItemGroup>
<PackageReference Include="Azure.Identity" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
<PackageReference Include="Microsoft.SemanticKernel" Version="<latest>" />
<PackageReference Include="Microsoft.SemanticKernel.Agents.OpenAI" Version="<latest>" />
</ItemGroup>
El Agent Framework
es experimental y requiere la supresión de advertencias. Esto puede abordarse en como una propiedad en el archivo del proyecto (.csproj
):
<PropertyGroup>
<NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
</PropertyGroup>
Además, copie los archivos de datos PopulationByAdmin1.csv
y PopulationByCountry.csv
del proyecto del Kernel LearnResources
Semántico. Agregue estos archivos en la carpeta del proyecto y configúrelos para que se copien en el directorio de salida:
<ItemGroup>
<None Include="PopulationByAdmin1.csv">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</None>
<None Include="PopulationByCountry.csv">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</None>
</ItemGroup>
Empiece por crear una carpeta que contenga el script (.py
archivo) y los recursos de ejemplo. Incluya las siguientes importaciones en la parte superior del .py
archivo:
import asyncio
import os
from semantic_kernel.agents import AssistantAgentThread, AzureAssistantAgent
from semantic_kernel.contents import StreamingFileReferenceContent
Además, copie los archivos de datos PopulationByAdmin1.csv
y PopulationByCountry.csv
desde el directorio Kernel Semántico learn_resources/resources
. Agregue estos archivos al directorio de trabajo.
Característica actualmente no disponible en Java.
Configuración
Este ejemplo requiere la configuración para conectarse a servicios remotos. Deberá definir la configuración de OpenAI o Azure OpenAI.
# OpenAI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"
# Azure OpenAI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "<model-endpoint>"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"
La siguiente clase se usa en todos los ejemplos del agente. Asegúrese de incluirlo en el proyecto para garantizar una funcionalidad adecuada. Esta clase actúa como un componente fundamental para los ejemplos siguientes.
using System.Reflection;
using Microsoft.Extensions.Configuration;
namespace AgentsSample;
public class Settings
{
private readonly IConfigurationRoot configRoot;
private AzureOpenAISettings azureOpenAI;
private OpenAISettings openAI;
public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();
public class OpenAISettings
{
public string ChatModel { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public class AzureOpenAISettings
{
public string ChatModelDeployment { get; set; } = string.Empty;
public string Endpoint { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public TSettings GetSettings<TSettings>() =>
this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;
public Settings()
{
this.configRoot =
new ConfigurationBuilder()
.AddEnvironmentVariables()
.AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
.Build();
}
}
La forma más rápida de empezar a trabajar con la configuración adecuada para ejecutar el código de ejemplo es crear un .env
archivo en la raíz del proyecto (donde se ejecuta el script).
Configure los valores siguientes en su archivo .env
para Azure OpenAI o OpenAI:
AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://<resource-name>.openai.azure.com/"
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."
OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""
Propina
Azure Assistants requiere una versión de API de al menos 2024-05-01-preview. A medida que se introducen nuevas características, las versiones de API se actualizan en consecuencia. A partir de este artículo, la versión más reciente es 2025-01-01-preview. Para obtener los detalles de control de versiones más actualizados, consulte la versión preliminar de la API de Azure OpenAI .
Una vez configuradas, las clases de servicio de IA correspondientes recogerán las variables necesarias y las usarán durante la creación de instancias.
Característica actualmente no disponible en Java.
Codificar
El proceso de codificación de este ejemplo implica:
- Configuración : inicialización de la configuración y el complemento.
-
Definición del Agente: cree el asistente de OpenAI
Agent
con instrucciones y complementos basados en plantillas. - El bucle de chat: elabora el bucle que impulsa la interacción usuario/agente.
El código de ejemplo completo se proporciona en la sección Final . Consulte esa sección para obtener la implementación completa.
Configuración
Antes de crear un OpenAIAssistantAgent
, asegúrese de que las opciones de configuración están disponibles y preparen los recursos de archivo.
Cree una instancia de la clase Settings
a la que se hace referencia en la sección Configuración anterior. Utiliza la configuración para crear también un AzureOpenAIClient
que se usará para la Definición del Agente, así como para la carga de archivos.
Settings settings = new();
AzureOpenAIClient client = OpenAIAssistantAgent.CreateAzureOpenAIClient(new AzureCliCredential(), new Uri(settings.AzureOpenAI.Endpoint));
Característica actualmente no disponible en Java.
Utilice el AzureOpenAIClient
para acceder a un OpenAIFileClient
y cargar los dos archivos de datos descritos en la sección Configuración anterior, conservando la Referencia de Archivo para la limpieza final.
Console.WriteLine("Uploading files...");
OpenAIFileClient fileClient = client.GetOpenAIFileClient();
OpenAIFile fileDataCountryDetail = await fileClient.UploadFileAsync("PopulationByAdmin1.csv", FileUploadPurpose.Assistants);
OpenAIFile fileDataCountryList = await fileClient.UploadFileAsync("PopulationByCountry.csv", FileUploadPurpose.Assistants);
Antes de crear un AzureAssistantAgent
o un OpenAIAssistantAgent
, asegúrese de que las opciones de configuración están disponibles y preparen los recursos del archivo.
Propina
Es posible que tenga que ajustar las rutas de acceso de archivo en función de dónde se encuentren los archivos.
# Let's form the file paths that we will use as part of file upload
csv_file_path_1 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
"PopulationByAdmin1.csv",
)
csv_file_path_2 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
"PopulationByCountry.csv",
)
# Create the client using Azure OpenAI resources and configuration
client, model = AzureAssistantAgent.setup_resources()
# Upload the files to the client
file_ids: list[str] = []
for path in [csv_file_path_1, csv_file_path_2]:
with open(path, "rb") as file:
file = await client.files.create(file=file, purpose="assistants")
file_ids.append(file.id)
# Get the code interpreter tool and resources
code_interpreter_tools, code_interpreter_tool_resources = AzureAssistantAgent.configure_code_interpreter_tool(
file_ids=file_ids
)
# Create the assistant definition
definition = await client.beta.assistants.create(
model=model,
instructions="""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
name="SampleAssistantAgent",
tools=code_interpreter_tools,
tool_resources=code_interpreter_tool_resources,
)
Primero configuramos los recursos de Azure OpenAI para obtener el cliente y el modelo. A continuación, cargamos los archivos CSV desde las rutas de acceso especificadas mediante la API files del cliente. A continuación, configuramos el code_interpreter_tool
mediante los identificadores de archivo cargados, que están vinculados al asistente tras la creación junto con el modelo, las instrucciones y el nombre.
Característica actualmente no disponible en Java.
Definición del agente
Ahora estamos listos para crear instancias de un OpenAIAssistantAgent
creando primero una definición de asistente. El asistente está configurado con su modelo objetivo, Instrucciones, y la herramienta Intérprete de código habilitada. Además, asociamos explícitamente los dos archivos de datos con la herramienta Intérprete de código.
Console.WriteLine("Defining agent...");
AssistantClient assistantClient = client.GetAssistantClient();
Assistant assistant =
await assistantClient.CreateAssistantAsync(
settings.AzureOpenAI.ChatModelDeployment,
name: "SampleAssistantAgent",
instructions:
"""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
enableCodeInterpreter: true,
codeInterpreterFileIds: [fileDataCountryList.Id, fileDataCountryDetail.Id]);
// Create agent
OpenAIAssistantAgent agent = new(assistant, assistantClient);
Ahora estamos listos para instanciar un AzureAssistantAgent
. El agente se configura con el cliente y la definición del asistente.
# Create the agent using the client and the assistant definition
agent = AzureAssistantAgent(
client=client,
definition=definition,
)
Característica actualmente no disponible en Java.
Bucle de chat
Por último, podemos coordinar la interacción entre el usuario y el Agent
. Empiece por crear un AgentThread
para mantener el estado de la conversación y crear un bucle vacío.
Asegurémonos también de que los recursos se eliminen al final de la ejecución para minimizar los cargos innecesarios.
Console.WriteLine("Creating thread...");
AssistantAgentThread agentThread = new();
Console.WriteLine("Ready!");
try
{
bool isComplete = false;
List<string> fileIds = [];
do
{
} while (!isComplete);
}
finally
{
Console.WriteLine();
Console.WriteLine("Cleaning-up...");
await Task.WhenAll(
[
agentThread.DeleteAsync(),
assistantClient.DeleteAssistantAsync(assistant.Id),
fileClient.DeleteFileAsync(fileDataCountryList.Id),
fileClient.DeleteFileAsync(fileDataCountryDetail.Id),
]);
}
thread: AssistantAgentThread = None
try:
is_complete: bool = False
file_ids: list[str] = []
while not is_complete:
# agent interaction logic here
finally:
print("\nCleaning up resources...")
[await client.files.delete(file_id) for file_id in file_ids]
await thread.delete() if thread else None
await client.beta.assistants.delete(agent.id)
Característica actualmente no disponible en Java.
Ahora vamos a capturar la entrada del usuario dentro del bucle anterior. En este caso, se omitirá la entrada vacía y el término EXIT
indicará que la conversación se ha completado.
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
var message = new ChatMessageContent(AuthorRole.User, input);
Console.WriteLine();
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
Característica actualmente no disponible en Java.
Antes de invocar la respuesta Agent
, vamos a agregar algunos métodos auxiliares para descargar los archivos que puede generar el Agent
.
Aquí se coloca el contenido del archivo en el directorio temporal definido por el sistema y, a continuación, se inicia la aplicación de visor definida por el sistema.
private static async Task DownloadResponseImageAsync(OpenAIFileClient client, ICollection<string> fileIds)
{
if (fileIds.Count > 0)
{
Console.WriteLine();
foreach (string fileId in fileIds)
{
await DownloadFileContentAsync(client, fileId, launchViewer: true);
}
}
}
private static async Task DownloadFileContentAsync(OpenAIFileClient client, string fileId, bool launchViewer = false)
{
OpenAIFile fileInfo = client.GetFile(fileId);
if (fileInfo.Purpose == FilePurpose.AssistantsOutput)
{
string filePath =
Path.Combine(
Path.GetTempPath(),
Path.GetFileName(Path.ChangeExtension(fileInfo.Filename, ".png")));
BinaryData content = await client.DownloadFileAsync(fileId);
await using FileStream fileStream = new(filePath, FileMode.CreateNew);
await content.ToStream().CopyToAsync(fileStream);
Console.WriteLine($"File saved to: {filePath}.");
if (launchViewer)
{
Process.Start(
new ProcessStartInfo
{
FileName = "cmd.exe",
Arguments = $"/C start {filePath}"
});
}
}
}
import os
async def download_file_content(agent, file_id: str):
try:
# Fetch the content of the file using the provided method
response_content = await agent.client.files.content(file_id)
# Get the current working directory of the file
current_directory = os.path.dirname(os.path.abspath(__file__))
# Define the path to save the image in the current directory
file_path = os.path.join(
current_directory, # Use the current directory of the file
f"{file_id}.png" # You can modify this to use the actual filename with proper extension
)
# Save content to a file asynchronously
with open(file_path, "wb") as file:
file.write(response_content.content)
print(f"File saved to: {file_path}")
except Exception as e:
print(f"An error occurred while downloading file {file_id}: {str(e)}")
async def download_response_image(agent, file_ids: list[str]):
if file_ids:
# Iterate over file_ids and download each one
for file_id in file_ids:
await download_file_content(agent, file_id)
Característica actualmente no disponible en Java.
Para generar una respuesta Agent
a la entrada del usuario, invoque proporcionando el mensaje y el AgentThread
al agente. En este ejemplo, se elige una respuesta transmitida y se capturan todas las referencias de archivo generadas para su descarga y revisión al final del ciclo de respuesta. Es importante tener en cuenta que el código generado se identifica mediante la presencia de una clave de metadatos en el mensaje de respuesta, lo que lo distingue de la respuesta conversacional.
bool isCode = false;
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(message, agentThread))
{
if (isCode != (response.Metadata?.ContainsKey(OpenAIAssistantAgent.CodeInterpreterMetadataKey) ?? false))
{
Console.WriteLine();
isCode = !isCode;
}
// Display response.
Console.Write($"{response.Content}");
// Capture file IDs for downloading.
fileIds.AddRange(response.Items.OfType<StreamingFileReferenceContent>().Select(item => item.FileId));
}
Console.WriteLine();
// Download any files referenced in the response.
await DownloadResponseImageAsync(fileClient, fileIds);
fileIds.Clear();
is_code = False
last_role = None
async for response in agent.invoke_stream(messages=user_input, thread=thread):
current_is_code = response.metadata.get("code", False)
if current_is_code:
if not is_code:
print("\n\n```python")
is_code = True
print(response.content, end="", flush=True)
else:
if is_code:
print("\n```")
is_code = False
last_role = None
if hasattr(response, "role") and response.role is not None and last_role != response.role:
print(f"\n# {response.role}: ", end="", flush=True)
last_role = response.role
print(response.content, end="", flush=True)
file_ids.extend([
item.file_id for item in response.items if isinstance(item, StreamingFileReferenceContent)
])
thread = response.thread
if is_code:
print("```\n")
print()
await download_response_image(agent, file_ids)
file_ids.clear()
Característica actualmente no disponible en Java.
Final
Al reunir todos los pasos, tenemos el código final de este ejemplo. A continuación se proporciona la implementación completa.
Pruebe a usar estas entradas sugeridas:
- Compare los archivos para determinar el número de países que no tienen un estado o provincia definido en comparación con el recuento total.
- Cree una tabla para los países con estado o provincia definido. Incluir el recuento de estados o provincias y la población total
- Proporcione un gráfico de barras para los países cuyos nombres comienzan con la misma letra y ordenan el eje x por recuento más alto a más bajo (incluya todos los países)
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents.OpenAI;
using Microsoft.SemanticKernel.ChatCompletion;
using OpenAI.Assistants;
using OpenAI.Files;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
namespace AgentsSample;
public static class Program
{
public static async Task Main()
{
// Load configuration from environment variables or user secrets.
Settings settings = new();
// Initialize the clients
AzureOpenAIClient client = OpenAIAssistantAgent.CreateAzureOpenAIClient(new AzureCliCredential(), new Uri(settings.AzureOpenAI.Endpoint));
//OpenAIClient client = OpenAIAssistantAgent.CreateOpenAIClient(new ApiKeyCredential(settings.OpenAI.ApiKey)));
AssistantClient assistantClient = client.GetAssistantClient();
OpenAIFileClient fileClient = client.GetOpenAIFileClient();
// Upload files
Console.WriteLine("Uploading files...");
OpenAIFile fileDataCountryDetail = await fileClient.UploadFileAsync("PopulationByAdmin1.csv", FileUploadPurpose.Assistants);
OpenAIFile fileDataCountryList = await fileClient.UploadFileAsync("PopulationByCountry.csv", FileUploadPurpose.Assistants);
// Define assistant
Console.WriteLine("Defining assistant...");
Assistant assistant =
await assistantClient.CreateAssistantAsync(
settings.AzureOpenAI.ChatModelDeployment,
name: "SampleAssistantAgent",
instructions:
"""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
enableCodeInterpreter: true,
codeInterpreterFileIds: [fileDataCountryList.Id, fileDataCountryDetail.Id]);
// Create agent
OpenAIAssistantAgent agent = new(assistant, assistantClient);
// Create the conversation thread
Console.WriteLine("Creating thread...");
AssistantAgentThread agentThread = new();
Console.WriteLine("Ready!");
try
{
bool isComplete = false;
List<string> fileIds = [];
do
{
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
var message = new ChatMessageContent(AuthorRole.User, input);
Console.WriteLine();
bool isCode = false;
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(message, agentThread))
{
if (isCode != (response.Metadata?.ContainsKey(OpenAIAssistantAgent.CodeInterpreterMetadataKey) ?? false))
{
Console.WriteLine();
isCode = !isCode;
}
// Display response.
Console.Write($"{response.Content}");
// Capture file IDs for downloading.
fileIds.AddRange(response.Items.OfType<StreamingFileReferenceContent>().Select(item => item.FileId));
}
Console.WriteLine();
// Download any files referenced in the response.
await DownloadResponseImageAsync(fileClient, fileIds);
fileIds.Clear();
} while (!isComplete);
}
finally
{
Console.WriteLine();
Console.WriteLine("Cleaning-up...");
await Task.WhenAll(
[
agentThread.DeleteAsync(),
assistantClient.DeleteAssistantAsync(assistant.Id),
fileClient.DeleteFileAsync(fileDataCountryList.Id),
fileClient.DeleteFileAsync(fileDataCountryDetail.Id),
]);
}
}
private static async Task DownloadResponseImageAsync(OpenAIFileClient client, ICollection<string> fileIds)
{
if (fileIds.Count > 0)
{
Console.WriteLine();
foreach (string fileId in fileIds)
{
await DownloadFileContentAsync(client, fileId, launchViewer: true);
}
}
}
private static async Task DownloadFileContentAsync(OpenAIFileClient client, string fileId, bool launchViewer = false)
{
OpenAIFile fileInfo = client.GetFile(fileId);
if (fileInfo.Purpose == FilePurpose.AssistantsOutput)
{
string filePath =
Path.Combine(
Path.GetTempPath(),
Path.GetFileName(Path.ChangeExtension(fileInfo.Filename, ".png")));
BinaryData content = await client.DownloadFileAsync(fileId);
await using FileStream fileStream = new(filePath, FileMode.CreateNew);
await content.ToStream().CopyToAsync(fileStream);
Console.WriteLine($"File saved to: {filePath}.");
if (launchViewer)
{
Process.Start(
new ProcessStartInfo
{
FileName = "cmd.exe",
Arguments = $"/C start {filePath}"
});
}
}
}
}
import asyncio
import logging
import os
from semantic_kernel.agents import AssistantAgentThread, AzureAssistantAgent
from semantic_kernel.contents import StreamingFileReferenceContent
logging.basicConfig(level=logging.ERROR)
"""
The following sample demonstrates how to create a simple,
OpenAI assistant agent that utilizes the code interpreter
to analyze uploaded files.
"""
# Let's form the file paths that we will later pass to the assistant
csv_file_path_1 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
"PopulationByAdmin1.csv",
)
csv_file_path_2 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
"PopulationByCountry.csv",
)
async def download_file_content(agent: AzureAssistantAgent, file_id: str):
try:
# Fetch the content of the file using the provided method
response_content = await agent.client.files.content(file_id)
# Get the current working directory of the file
current_directory = os.path.dirname(os.path.abspath(__file__))
# Define the path to save the image in the current directory
file_path = os.path.join(
current_directory, # Use the current directory of the file
f"{file_id}.png", # You can modify this to use the actual filename with proper extension
)
# Save content to a file asynchronously
with open(file_path, "wb") as file:
file.write(response_content.content)
print(f"File saved to: {file_path}")
except Exception as e:
print(f"An error occurred while downloading file {file_id}: {str(e)}")
async def download_response_image(agent: AzureAssistantAgent, file_ids: list[str]):
if file_ids:
# Iterate over file_ids and download each one
for file_id in file_ids:
await download_file_content(agent, file_id)
async def main():
# Create the client using Azure OpenAI resources and configuration
client, model = AzureAssistantAgent.setup_resources()
# Upload the files to the client
file_ids: list[str] = []
for path in [csv_file_path_1, csv_file_path_2]:
with open(path, "rb") as file:
file = await client.files.create(file=file, purpose="assistants")
file_ids.append(file.id)
# Get the code interpreter tool and resources
code_interpreter_tools, code_interpreter_tool_resources = AzureAssistantAgent.configure_code_interpreter_tool(
file_ids=file_ids
)
# Create the assistant definition
definition = await client.beta.assistants.create(
model=model,
instructions="""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
name="SampleAssistantAgent",
tools=code_interpreter_tools,
tool_resources=code_interpreter_tool_resources,
)
# Create the agent using the client and the assistant definition
agent = AzureAssistantAgent(
client=client,
definition=definition,
)
thread: AssistantAgentThread = None
try:
is_complete: bool = False
file_ids: list[str] = []
while not is_complete:
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
is_code = False
last_role = None
async for response in agent.invoke_stream(messages=user_input, thread=thread):
current_is_code = response.metadata.get("code", False)
if current_is_code:
if not is_code:
print("\n\n```python")
is_code = True
print(response.content, end="", flush=True)
else:
if is_code:
print("\n```")
is_code = False
last_role = None
if hasattr(response, "role") and response.role is not None and last_role != response.role:
print(f"\n# {response.role}: ", end="", flush=True)
last_role = response.role
print(response.content, end="", flush=True)
file_ids.extend([
item.file_id for item in response.items if isinstance(item, StreamingFileReferenceContent)
])
thread = response.thread
if is_code:
print("```\n")
print()
await download_response_image(agent, file_ids)
file_ids.clear()
finally:
print("\nCleaning up resources...")
[await client.files.delete(file_id) for file_id in file_ids]
await thread.delete() if thread else None
await client.beta.assistants.delete(agent.id)
if __name__ == "__main__":
asyncio.run(main())
Puede encontrar el código completo , como se muestra anteriormente, en nuestro repositorio.
Característica actualmente no disponible en Java.