Compartir a través de


loadImage: transformación de la carga de imágenes de Machine Learning

Carga los datos de la imagen.

Uso

  loadImage(vars)

Argumentos

vars

Lista con nombre de vectores de caracteres de nombres de variables de entrada y el nombre de la variable de salida. Tenga en cuenta que todas las variables de entrada deben ser del mismo tipo. Para las asignaciones uno a uno entre variables de entrada y salida, se puede usar un vector de caracteres con nombre.

Detalles

loadImage: carga imágenes desde rutas de acceso.

Value

Un objeto maml que define la transformación.

Autores

Microsoft Corporation Microsoft Technical Support

Ejemplos


 train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)

 # Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
 model <- rxNeuralNet(
     Label ~ Features,
     data = train,
     mlTransforms = list(
         loadImage(vars = list(Features = "Path")),
         resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
         extractPixels(vars = "Features")
         ),
     mlTransformVars = "Path",
     numHiddenNodes = 1,
     numIterations = 1)

 # Featurizes the images from variable Path using the default model, and trains a linear model on the result.
 model <- rxFastLinear(
     Label ~ Features,
     data = train,
     mlTransforms = list(
         loadImage(vars = list(Features = "Path")),
         resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
         extractPixels(vars = "Features"),
         featurizeImage(var = "Features")
         ),
     mlTransformVars = "Path")