Nota
El acceso a esta página requiere autorización. Puede intentar iniciar sesión o cambiar directorios.
El acceso a esta página requiere autorización. Puede intentar cambiar los directorios.
En este tutorial, crearás una plantilla personalizada de Paquete de Activos de Databricks para gestionar paquetes que ejecutan un trabajo con una tarea específica de Python en un clúster utilizando una imagen de contenedor de Docker específica.
Para obtener información sobre las plantillas de agrupación personalizadas, consulte Plantillas de agrupación personalizadas.
Requisitos
- Instale la CLI de Databricks versión 0.218.0 o posterior. Si ya lo ha instalado, confirme que la versión es 0.218.0 o posterior mediante la ejecución
databricks -versiondesde la línea de comandos.
Definición de variables de solicitud de usuario
El primer paso para crear una plantilla de conjunto es definir las variables de solicitud del usuario databricks bundle init. Desde la línea de comandos:
Cree un directorio vacío denominado
dab-container-template:mkdir dab-container-templateEn la raíz del directorio, cree un archivo denominado
databricks_template_schema.json:cd dab-container-template touch databricks_template_schema.jsonAgregue el siguiente contenido al
databricks_template_schema.jsony guarde el archivo. Cada variable se traducirá a un mensaje para el usuario durante la creación del paquete.{ "properties": { "project_name": { "type": "string", "default": "project_name", "description": "Project name", "order": 1 } } }
Crea la estructura de carpetas del paquete
A continuación, en el directorio de plantillas, cree subdirectorios denominados resources y src. La carpeta template contiene la estructura de directorios de los conjuntos generados. Los nombres de los subdirectorios y archivos seguirán la plantilla de sintaxis de paquete Go cuando se deriven de los valores proporcionados por el usuario.
mkdir -p "template/resources"
mkdir -p "template/src"
Adición de plantillas de configuración de YAML
En el directorio template, cree un archivo denominado databricks.yml.tmpl y agregue el siguiente código YAML. En este ejemplo se usan asistentes de plantillas de agrupación.
touch template/databricks.yml.tmpl
# This is a Databricks asset bundle definition for {{.project_name}}.
# See https://docs.databricks.com/dev-tools/bundles/index.html for documentation.
bundle:
name: {{.project_name}}
include:
- resources/*.yml
targets:
# The 'dev' target, used for development purposes.
# Whenever a developer deploys using 'dev', they get their own copy.
dev:
# We use 'mode: development' to make sure everything deployed to this target gets a prefix
# like '[dev my_user_name]'. Setting this mode also disables any schedules and
# automatic triggers for jobs and enables the 'development' mode for :re[LDP].
mode: development
default: true
workspace:
host: {{workspace_host}}
# The 'prod' target, used for production deployment.
prod:
# For production deployments, we only have a single copy, so we override the
# workspace.root_path default of
# /Workspace/Users/${workspace.current_user.userName}/.bundle/${bundle.target}/${bundle.name}
# to a path that is not specific to the current user.
#
# By making use of 'mode: production' we enable strict checks
# to make sure we have correctly configured this target.
mode: production
workspace:
host: {{workspace_host}}
root_path: /Shared/.bundle/prod/${bundle.name}
{{- if not is_service_principal}}
run_as:
# This runs as {{user_name}} in production. Alternatively,
# a service principal could be used here using service_principal_name
# (see Databricks documentation).
user_name: {{user_name}}
{{end -}}
Cree otro archivo YAML denominado {{.project_name}}_job.yml.tmpl y colóquelo en el directorio template/resources. Este nuevo archivo YAML separa las definiciones de trabajo del proyecto del resto de la definición del conjunto. Agregue el siguiente código YAML a este archivo para describir el trabajo de plantilla, que contiene una tarea específica de Python para ejecutarse en un clúster de trabajos mediante una imagen de contenedor de Docker específica:
touch template/resources/{{.project_name}}_job.yml.tmpl
# The main job for {{.project_name}}
resources:
jobs:
{{.project_name}}_job:
name: {{.project_name}}_job
tasks:
- task_key: python_task
job_cluster_key: job_cluster
spark_python_task:
python_file: ../src/{{.project_name}}/task.py
job_clusters:
- job_cluster_key: job_cluster
new_cluster:
docker_image:
url: databricksruntime/python:10.4-LTS
node_type_id: i3.xlarge
spark_version: 13.3.x-scala2.12
En este ejemplo, usará una imagen de contenedor de Docker base de Databricks predeterminada, pero puede especificar su propia imagen personalizada en su lugar.
Agregar archivos a los que se hace referencia en la configuración
A continuación, cree un directorio template/src/{{.project_name}} y cree el archivo de tareas de Python al que hace referencia el trabajo en la plantilla:
mkdir -p template/src/{{.project_name}}
touch template/src/{{.project_name}}/task.py
Ahora, agregue lo siguiente a task.py:
import pyspark
from pyspark.sql import SparkSession
spark = SparkSession.builder.master('local[*]').appName('example').getOrCreate()
print(f'Spark version{spark.version}')
Comprobación de la estructura de la plantilla de agrupación
Revise la estructura de carpetas del proyecto de plantilla de agrupación. Debería tener este aspecto:
.
├── databricks_template_schema.json
└── template
├── databricks.yml.tmpl
├── resources
│ └── {{.project_name}}_job.yml.tmpl
└── src
└── {{.project_name}}
└── task.py
Prueba de la plantilla
Por último, pruebe la plantilla de agrupación. Para generar una agrupación basada en la nueva plantilla personalizada, use el comando databricks bundle init y especifique la nueva ubicación de plantilla. Desde la carpeta raíz de tus paquetes de proyectos:
mkdir my-new-container-bundle
cd my-new-container-bundle
databricks bundle init dab-container-template
Pasos siguientes
- Cree una agrupación que implemente un cuaderno en un área de trabajo de Azure Databricks y, a continuación, ejecute ese cuaderno implementado como trabajo de Azure Databricks. Consulte Desarrollo de un trabajo con Conjuntos de recursos de Databricks.
- Cree una agrupación que implemente un cuaderno en un área de trabajo de Azure Databricks y, a continuación, ejecute ese cuaderno implementado como una canalización de ETL. Consulte Desarrollo de canalizaciones declarativas de Spark de Lakeflow con conjuntos de recursos de Databricks.
- Cree una agrupación que implemente y ejecute una pila de MLOps. Consulte Conjuntos de recursos de Databricks para las pilas de MLOps.
- Agregue un paquete a un flujo de trabajo de CI/CD (integración continua y desarrollo/despliegue continuo) en GitHub. Consulte Acciones de GitHub.
Recursos
- repositorio de ejemplos de Bundle en GitHub