Nota
El acceso a esta página requiere autorización. Puede intentar iniciar sesión o cambiar directorios.
El acceso a esta página requiere autorización. Puede intentar cambiar los directorios.
Quita valores NULL de la matriz.
Syntax
from pyspark.sql import functions as sf
sf.array_compact(col)
Parámetros
| Parámetro | Tipo | Description |
|---|---|---|
col |
pyspark.sql.Column o str |
Nombre de columna o expresión |
Devoluciones
pyspark.sql.Column: una nueva columna que es una matriz que excluye los valores NULL de la columna de entrada.
Examples
Ejemplo 1: Eliminación de valores NULL de una matriz simple
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, None, 2, 3],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| [1, 2, 3]|
+-------------------+
Ejemplo 2: Eliminación de valores NULL de varias matrices
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, None, 2, 3],), ([4, 5, None, 4],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| [1, 2, 3]|
| [4, 5, 4]|
+-------------------+
Ejemplo 3: Eliminación de valores NULL de una matriz con todos los valores NULL
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType schema = StructType([StructField("data", ArrayType(StringType()), True)])
df = spark.createDataFrame([([None, None, None],)], schema)
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| []|
+-------------------+
Ejemplo 4: Eliminación de valores NULL de una matriz sin valores NULL
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| [1, 2, 3]|
+-------------------+
Ejemplo 5: Eliminación de valores NULL de una matriz vacía
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType
schema = StructType([
StructField("data", ArrayType(StringType()), True)
])
df = spark.createDataFrame([([],)], schema)
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| []|
+-------------------+