Escritura de mensajes en Apache HBase® con DataStream API de Apache Flink®
Nota:
Retiraremos Azure HDInsight en AKS el 31 de enero de 2025. Antes del 31 de enero de 2025, deberá migrar las cargas de trabajo a Microsoft Fabric o un producto equivalente de Azure para evitar la terminación repentina de las cargas de trabajo. Los clústeres restantes de la suscripción se detendrán y quitarán del host.
Solo el soporte técnico básico estará disponible hasta la fecha de retirada.
Importante
Esta funcionalidad actualmente está en su versión preliminar. En Términos de uso complementarios para las versiones preliminares de Microsoft Azure encontrará más términos legales que se aplican a las características de Azure que están en versión beta, en versión preliminar, o que todavía no se han lanzado con disponibilidad general. Para más información sobre esta versión preliminar específica, consulte la Información de Azure HDInsight sobre la versión preliminar de AKS. Para plantear preguntas o sugerencias sobre la característica, envíe una solicitud en AskHDInsight con los detalles y síganos para obtener más actualizaciones sobre Comunidad de Azure HDInsight.
En este artículo, aprenderá a escribir mensajes en HBase con Apache Flink DataStream API.
Información general
Apache Flink ofrece un conector de HBase como receptor, con este conector con Flink puede almacenar la salida de una aplicación de procesamiento en tiempo real en HBase. Obtenga información sobre cómo procesar datos de streaming en HDInsight Kafka como origen, realizar transformaciones y, después, conectarse a la tabla HBase de HDInsight.
En un escenario real, este ejemplo es una capa de análisis de flujos para obtener valor del análisis de Internet de las cosas (IOT), que usan datos del sensor en directo. El flujo de Flink puede leer datos del artículo de Kafka y escribirlos en la tabla de HBase. Si se cuenta con una aplicación IOT de streaming en tiempo real, la información puede recopilarse, transformarse y optimizarse.
Requisitos previos
- Clúster de Apache Flink en HDInsight en AKS
- Clúster de Apache Kafka en HDInsight
- Clúster de Apache HBase 2.4.11 en HDInsight
- Es necesario asegurarse de que HDInsight en el clúster de AKS puede conectarse al clúster de HDInsight, con la misma red virtual.
- Proyecto Maven en IntelliJ IDEA para el desarrollo en una máquina virtual de Azure en la misma red virtual
Pasos de implementación
Uso de la canalización para generar un tema de Kafka (tema de eventos de clic de usuario)
weblog.py
import json
import random
import time
from datetime import datetime
user_set = [
'John',
'XiaoMing',
'Mike',
'Tom',
'Machael',
'Zheng Hu',
'Zark',
'Tim',
'Andrew',
'Pick',
'Sean',
'Luke',
'Chunck'
]
web_set = [
'https://github.com',
'https://www.bing.com/new',
'https://kafka.apache.org',
'https://hbase.apache.org',
'https://flink.apache.org',
'https://spark.apache.org',
'https://trino.io',
'https://hadoop.apache.org',
'https://stackoverflow.com',
'https://docs.python.org',
'https://azure.microsoft.com/products/category/storage',
'/azure/hdinsight/hdinsight-overview',
'https://azure.microsoft.com/products/category/storage'
]
def main():
while True:
if random.randrange(13) < 4:
url = random.choice(web_set[:3])
else:
url = random.choice(web_set)
log_entry = {
'userName': random.choice(user_set),
'visitURL': url,
'ts': datetime.now().strftime("%m/%d/%Y %H:%M:%S")
}
print(json.dumps(log_entry))
time.sleep(0.05)
if __name__ == "__main__":
main()
Uso de la canalización para generar de temas de Apache Kafka
Vamos a usar click_events para el tema de Kafka
python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events
Comandos de ejemplo en Kafka
-- create topic (replace with your Kafka bootstrap server)
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic click_events --bootstrap-server wn0-contsk:9092
-- delete topic (replace with your Kafka bootstrap server)
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --delete --topic click_events --bootstrap-server wn0-contsk:9092
-- produce topic (replace with your Kafka bootstrap server)
python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events
-- consume topic
/usr/hdp/current/kafka-broker/bin/kafka-console-consumer.sh --bootstrap-server wn0-contsk:9092 --topic click_events --from-beginning
{"userName": "Luke", "visitURL": "https://azure.microsoft.com/products/category/storage", "ts": "07/11/2023 06:39:43"}
{"userName": "Sean", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:43"}
{"userName": "XiaoMing", "visitURL": "https://hbase.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Machael", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:43"}
{"userName": "Andrew", "visitURL": "https://github.com", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://kafka.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "XiaoMing", "visitURL": "https://trino.io", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://flink.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Mike", "visitURL": "https://kafka.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://docs.python.org", "ts": "07/11/2023 06:39:44"}
{"userName": "John", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:44"}
{"userName": "Mike", "visitURL": "https://hadoop.apache.org", "ts": "07/11/2023 06:39:44"}
{"userName": "Tim", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:44"}
.....
Creación de una tabla de HBase en el clúster de HDInsight
root@hn0-contos:/home/sshuser# hbase shell
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/hdp/5.1.1.3/hadoop/lib/slf4j-reload4j-1.7.35.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/hdp/5.1.1.3/hbase/lib/client-facing-thirdparty/slf4j-reload4j-1.7.33.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Reload4jLoggerFactory]
HBase Shell
Use "help" to get list of supported commands.
Use "exit" to quit this interactive shell.
For more information, see, http://hbase.apache.org/2.0/book.html#shell
Version 2.4.11.5.1.1.3, rUnknown, Thu Apr 20 12:31:07 UTC 2023
Took 0.0032 seconds
hbase:001:0> create 'user_click_events','user_info'
Created table user_click_events
Took 5.1399 seconds
=> Hbase::Table - user_click_events
hbase:002:0>
Desarrollo del proyecto para enviar archivo jar en Flink
crear un proyecto Maven con el siguiente pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>contoso.example</groupId>
<artifactId>FlinkHbaseDemo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<flink.version>1.17.0</flink.version>
<java.version>1.8</java.version>
<scala.binary.version>2.12</scala.binary.version>
<hbase.version>2.4.11</hbase.version>
<kafka.version>3.2.0</kafka.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-hbase-base -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-hbase-base</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-client -->
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>${hbase.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.1.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-base -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-base</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-core</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Código fuente
Escribir el programa receptor de HBase
HBaseWriterSink
package contoso.example;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
public class HBaseWriterSink extends RichSinkFunction<Tuple3<String,String,String>> {
String hbase_zk = "<update-hbasezk-ip>:2181,<update-hbasezk-ip>:2181,<update-hbasezk-ip>:2181";
Connection hbase_conn;
Table tb;
int i = 0;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
org.apache.hadoop.conf.Configuration hbase_conf = HBaseConfiguration.create();
hbase_conf.set("hbase.zookeeper.quorum", hbase_zk);
hbase_conf.set("zookeeper.znode.parent", "/hbase-unsecure");
hbase_conn = ConnectionFactory.createConnection(hbase_conf);
tb = hbase_conn.getTable(TableName.valueOf("user_click_events"));
}
@Override
public void invoke(Tuple3<String,String,String> value, Context context) throws Exception {
byte[] rowKey = Bytes.toBytes(String.format("%010d", i++));
Put put = new Put(rowKey);
put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("userName"), Bytes.toBytes(value.f0));
put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("visitURL"), Bytes.toBytes(value.f1));
put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("ts"), Bytes.toBytes(value.f2));
tb.put(put);
};
public void close() throws Exception {
if (null != tb) tb.close();
if (null != hbase_conn) hbase_conn.close();
}
}
main:KafkaSinkToHbase
Escritura de un receptor de Kafka en el programa HBase
package contoso.example;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class KafkaSinkToHbase {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(1);
String kafka_brokers = "10.0.0.38:9092,10.0.0.39:9092,10.0.0.40:9092";
KafkaSource<String> source = KafkaSource.<String>builder()
.setBootstrapServers(kafka_brokers)
.setTopics("click_events")
.setGroupId("my-group")
.setStartingOffsets(OffsetsInitializer.earliest())
.setValueOnlyDeserializer(new SimpleStringSchema())
.build();
DataStreamSource<String> kafka = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source").setParallelism(1);
DataStream<Tuple3<String,String,String>> dataStream = kafka.map(line-> {
String[] fields = line.toString().replace("{","").replace("}","").
replace("\"","").split(",");
Tuple3<String, String,String> tuple3 = Tuple3.of(fields[0].substring(10),fields[1].substring(11),fields[2].substring(5));
return tuple3;
}).returns(Types.TUPLE(Types.STRING,Types.STRING,Types.STRING));
dataStream.addSink(new HBaseWriterSink());
env.execute("Kafka Sink To Hbase");
}
}
Enviar trabajo
Cargue el trabajo Jar en la cuenta de almacenamiento asociada al clúster.
Agregue los detalles del trabajo en la pestaña Modo de aplicación.
Nota:
Asegúrese de agregar
Hadoop.class.enable
yclassloader.resolve-order
establecer.Seleccione Agregación de registros de trabajos para almacenar registros en ABFS.
Envíe el trabajo.
Debería poder ver el estado enviado del trabajo aquí.
Validación de datos de tabla de HBase
hbase:001:0> scan 'user_click_events',{LIMIT=>5}
ROW COLUMN+CELL
0000000000 column=user_info:ts, timestamp=2024-03-20T02:02:46.932, value=03/20/2024 02:02:43
0000000000 column=user_info:userName, timestamp=2024-03-20T02:02:46.932, value=Pick
0000000000 column=user_info:visitURL, timestamp=2024-03-20T02:02:46.932, value=
https://hadoop.apache.org
0000000001 column=user_info:ts, timestamp=2024-03-20T02:02:46.991, value=03/20/2024 02:02:43
0000000001 column=user_info:userName, timestamp=2024-03-20T02:02:46.991, value=Zheng Hu
0000000001 column=user_info:visitURL, timestamp=2024-03-20T02:02:46.991, value=/azure/hdinsight/hdinsight-overview
0000000002 column=user_info:ts, timestamp=2024-03-20T02:02:47.001, value=03/20/2024 02:02:43
0000000002 column=user_info:userName, timestamp=2024-03-20T02:02:47.001, value=Sean
0000000002 column=user_info:visitURL, timestamp=2024-03-20T02:02:47.001, value=
https://spark.apache.org
0000000003 column=user_info:ts, timestamp=2024-03-20T02:02:47.008, value=03/20/2024 02:02:43
0000000003 column=user_info:userName, timestamp=2024-03-20T02:02:47.008, value=Zheng Hu
0000000003 column=user_info:visitURL, timestamp=2024-03-20T02:02:47.008, value=
https://kafka.apache.org
0000000004 column=user_info:ts, timestamp=2024-03-20T02:02:47.017, value=03/20/2024 02:02:43
0000000004 column=user_info:userName, timestamp=2024-03-20T02:02:47.017, value=Chunck
0000000004 column=user_info:visitURL, timestamp=2024-03-20T02:02:47.017, value=
https://github.com
5 row(s)
Took 0.9269 seconds
Nota:
- FlinkKafkaConsumer está en desuso y se quita con Flink 1.17, use KafkaSource en su lugar.
- FlinkKafkaProducer está en desuso y se quita con Flink 1.15, use KafkaSink en su lugar.
Referencias
- Conector de Apache Kafka
- Descargar IntelliJ IDEA
- Apache, Apache Airflow, Airflow, Apache Flink, Flink y los nombres de proyecto de código abierto asociados son marcas comerciales de laApache Software Foundation (ASF).