Actualización de la administración de modelos al SDK v2
En este artículo se comparan los escenarios de SDK v1 con los de SDK v2.
Crear modelo
SDK v1
import urllib.request from azureml.core.model import Model # Register model model = Model.register(ws, model_name="local-file-example", model_path="mlflow-model/model.pkl")
SDK v2
from azure.ai.ml.entities import Model from azure.ai.ml.constants import AssetTypes file_model = Model( path="mlflow-model/model.pkl", type=AssetTypes.CUSTOM_MODEL, name="local-file-example", description="Model created from local file." ) ml_client.models.create_or_update(file_model)
Uso del modelo en un experimento o trabajo
SDK v1
model = run.register_model(model_name='run-model-example', model_path='outputs/model/') print(model.name, model.id, model.version, sep='\t')
SDK v2
from azure.ai.ml.entities import Model from azure.ai.ml.constants import AssetTypes run_model = Model( path="azureml://jobs/$RUN_ID/outputs/artifacts/paths/model/", name="run-model-example", description="Model created from run.", type=AssetTypes.CUSTOM_MODEL ) ml_client.models.create_or_update(run_model)
Para obtener más información sobre modelos, consulte Trabajar con modelos en Azure Machine Learning.
Asignación de la funcionalidad clave en SDK v1 y SDK v2
Funcionalidad en SDK v1 | Asignación aproximada en SDK v2 |
---|---|
Model.register | ml_client.models.create_or_update |
run.register_model | ml_client.models.create_or_update |
Model.deploy | ml_client.begin_create_or_update(blue_deployment) |
Pasos siguientes
Para más información, consulte la documentación aquí: