microsoftml.get_sentiment: análisis de sentimiento
Uso
microsoftml.get_sentiment(cols: [str, dict, list], **kargs)
Descripción
Puntúa el texto en lenguaje natural y valora la probabilidad de que las opiniones sean positivas.
Detalles
La transformación get_sentiment
devuelve la probabilidad de que la opinión de un texto en lenguaje natural sea positiva. Actualmente solo admite el idioma inglés.
Argumentos
cols
Cadena de caracteres o lista de nombres de variables que se transformarán. Si es dict
, los nombres representan los nombres de las nuevas variables que se crearán.
kargs
Argumentos adicionales que se envían al motor de proceso.
Devoluciones
Objeto que define la transformación.
Vea también
Ejemplo
'''
Example with get_sentiment and rx_logistic_regression.
'''
import numpy
import pandas
from microsoftml import rx_logistic_regression, rx_featurize, rx_predict, get_sentiment
# Create the data
customer_reviews = pandas.DataFrame(data=dict(review=[
"I really did not like the taste of it",
"It was surprisingly quite good!",
"I will never ever ever go to that place again!!"]))
# Get the sentiment scores
sentiment_scores = rx_featurize(
data=customer_reviews,
ml_transforms=[get_sentiment(cols=dict(scores="review"))])
# Let's translate the score to something more meaningful
sentiment_scores["eval"] = sentiment_scores.scores.apply(
lambda score: "AWESOMENESS" if score > 0.6 else "BLAH")
print(sentiment_scores)
Salida:
Beginning processing data.
Rows Read: 3, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:02.4327924
Finished writing 3 rows.
Writing completed.
review scores eval
0 I really did not like the taste of it 0.461790 BLAH
1 It was surprisingly quite good! 0.960192 AWESOMENESS
2 I will never ever ever go to that place again!! 0.310344 BLAH