unordered_multimap, classe
Le modèle de classe décrit un objet qui contrôle une séquence de longueur variable d’éléments de type std::pair<const Key, Ty>
. La séquence est triée par ordre faible avec une fonction de hachage, qui partitionne la séquence en un ensemble trié de sous-séquences appelées compartiments. Dans chaque compartiment, une fonction de comparaison détermine si des paires d'éléments possèdent un ordre équivalent. Chaque élément stocke deux objets, une clé de tri et une valeur. La séquence est représentée de façon à permettre la recherche, l'insertion et la suppression d'un élément arbitraire à l'aide d'un certain nombre d'opérations qui peut être indépendant du nombre d'éléments de la séquence (temps constant), du moins lorsque les compartiments sont de longueur à peu près équivalente. Dans le pire des cas, lorsque tous les éléments se trouvent dans un compartiment, le nombre d'opérations est proportionnel au nombre d'éléments de la séquence (temps linéaire). De plus, l'insertion d'un élément n'entraîne pas la non validité des itérateurs, et la suppression d'un élément ne rend non valides que les itérateurs qui pointent vers l'élément supprimé.
Syntaxe
template <class Key,
class Ty,
class Hash = std::hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key>>
class unordered_multimap;
Paramètres
Clé
Type de clé.
Ty
Type mappé.
Hash
Type d’objet de la fonction de hachage.
Pred
Type d’objet de fonction de comparaison d’égalité.
Alloc
Classe allocator.
Membres
Définition de type | Description |
---|---|
allocator_type | Type d'un allocateur pour la gestion du stockage. |
const_iterator | Type d'un itérateur constant pour la séquence contrôlée. |
const_local_iterator | Type d’un itérateur de compartiment constant pour la séquence contrôlée. |
const_pointer | Type d'un pointeur constant vers un élément. |
const_reference | Type d'une référence constante à un élément. |
difference_type | Type d'une distance signée entre deux éléments. |
Hasher | Type de la fonction de hachage. |
iterator | Type d'un itérateur pour la séquence contrôlée. |
key_equal | Type de la fonction de comparaison. |
key_type | Type d'une clé de tri. |
local_iterator | Type d'un itérateur de compartiment pour la séquence contrôlée. |
mapped_type | Type d'une valeur mappée associée à chaque clé. |
pointer | Type d'un pointeur vers un élément. |
référence | Type d'une référence à un élément. |
size_type | Type d'une distance non signée entre deux éléments. |
value_type | Type d’un élément. |
Fonction membre | Description |
---|---|
begin | Désigne le début de la séquence contrôlée. |
seau | Obtient le numéro du compartiment pour une valeur de clé. |
bucket_count | Obtient le nombre de compartiments. |
bucket_size | Obtient la taille d'un compartiment. |
cbegin | Désigne le début de la séquence contrôlée. |
cend | Désigne la fin de la séquence contrôlée. |
clear | Supprime tous les éléments. |
contientC++20 | Vérifie s’il existe un élément avec la clé spécifiée dans le unordered_multimap . |
count | Recherche le nombre d’éléments qui correspondent à une clé spécifiée. |
emplace | Ajoute un élément construit sur place. |
emplace_hint | Ajoute un élément construit sur place, avec un indicateur. |
empty | Vérifie l'absence d'éléments. |
end | Désigne la fin de la séquence contrôlée. |
equal_range | Recherche une plage qui correspond à une clé spécifiée. |
erase | Supprime les éléments placés aux positions spécifiées. |
find | Recherche un élément qui correspond à une clé spécifiée. |
get_allocator | Obtient l’objet allocateur stocké. |
hash_function | Obtient l'objet de fonction de hachage stocké. |
insert | Ajoute des éléments. |
key_eq | Obtient l'objet de fonction de comparaison stocké. |
load_factor | Compte le nombre moyen d'éléments par compartiment. |
max_bucket_count | Obtient le nombre maximal de compartiments. |
max_load_factor | Obtient ou définit le nombre maximal d’éléments par compartiment. |
max_size | Obtient ou définit la taille maximale de la séquence contrôlée. |
ressasser | Régénère la table de hachage. |
size | Compte le nombre d'éléments. |
swap | Échange le contenu de deux conteneurs. |
unordered_multimap | Construit un objet conteneur. |
Opérateur | Description |
---|---|
unordered_multimap::operator= | Copie une table de hachage. |
Notes
L’objet trie la séquence qu’il contrôle en appelant deux objets stockés, un objet de fonction de comparaison de type unordered_multimap::key_equal et un objet de fonction de hachage de type unordered_multimap::hasher. Pour accéder au premier objet stocké, appelez la fonction membre unordered_multimap::key_eq()
. Pour accéder au second objet stocké, appelez la fonction membre unordered_multimap::hash_function()
. Pour toutes les valeurs X
et Y
de type Key
, l'appel key_eq()(X, Y)
retourne true uniquement si les valeurs des deux arguments ont un classement équivalent. L'appel hash_function()(keyval)
génère une distribution des valeurs de type size_t
. Contrairement au modèle de classe unordered_map Class, un objet de type unordered_multimap
ne garantit pas qu’il key_eq()(X, Y)
est toujours faux pour deux éléments de la séquence contrôlée. Il n'est pas nécessaire que les clés soient uniques.
L'objet stocke également un facteur de charge maximale, qui spécifie le nombre moyen maximal d'éléments souhaité par compartiment. Si après l’insertion d’un élément, unordered_multimap::load_factor()
dépasse le facteur de charge maximale, le conteneur augmente le nombre de compartiments et reconstruit la table de hachage si nécessaire.
L'ordre réel des éléments de la séquence contrôlée dépend de la fonction de hachage, de la fonction de comparaison, de l'ordre d'insertion, du facteur de charge maximale et du nombre de compartiments. En général, il n'est pas possible de prévoir l'ordre des éléments de la séquence contrôlée. Toutefois, vous avez la garantie que tous les sous-ensembles d'éléments dont le classement est équivalent sont adjacents dans la séquence contrôlée.
L’objet alloue et libère du stockage pour la séquence qu’il contrôle via un objet allocateur stocké de type unordered_multimap::allocator_type. Un tel objet allocator doit avoir la même interface externe qu’un objet de type allocator
. Notez que l'objet allocateur stocké n'est pas copié lorsque l'objet conteneur est assigné.
Spécifications
Header :<unordered_map>
Espace de noms : std
unordered_multimap::allocator_type
Type d'un allocateur pour la gestion du stockage.
typedef Alloc allocator_type;
Notes
Le type est un synonyme du paramètre de modèle Alloc
.
Exemple
// std__unordered_map__unordered_multimap_allocator_type.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
typedef std::allocator<std::pair<const char, int> > Myalloc;
int main()
{
Mymap c1;
Mymap::allocator_type al = c1.get_allocator();
std::cout << "al == std::allocator() is "
<< std::boolalpha << (al == Myalloc()) << std::endl;
return (0);
}
al == std::allocator() is true
unordered_multimap::begin
Désigne le début de la séquence contrôlée ou un compartiment.
iterator begin();
const_iterator begin() const;
local_iterator begin(size_type nbucket);
const_local_iterator begin(size_type nbucket) const;
Paramètres
nbucket
Numéro de compartiment.
Notes
Les deux premières fonctions membres retournent un itérateur vers l'avant qui pointe vers le premier élément de la séquence (ou juste après la fin d'une séquence vide). Les deux dernières fonctions membres retournent un itérateur de transfert qui pointe au premier élément du nbucket de compartiment (ou juste au-delà de la fin d’un compartiment vide).
Exemple
// std__unordered_map__unordered_multimap_begin.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect first two items " [c 3] [b 2]"
Mymap::iterator it2 = c1.begin();
std::cout << " [" << it2->first << ", " << it2->second << "]";
++it2;
std::cout << " [" << it2->first << ", " << it2->second << "]";
std::cout << std::endl;
// inspect bucket containing 'a'
Mymap::const_local_iterator lit = c1.begin(c1.bucket('a'));
std::cout << " [" << lit->first << ", " << lit->second << "]";
return (0);
}
[c, 3] [b, 2] [a, 1]
[c, 3] [b, 2]
[a, 1]
unordered_multimap::bucket
Obtient le numéro du compartiment pour une valeur de clé.
size_type bucket(const Key& keyval) const;
Paramètres
keyval
Valeur de clé à mapper.
Notes
La fonction membre retourne le numéro de compartiment correspondant actuellement à la valeur cléval.
Exemple
// std__unordered_map__unordered_multimap_bucket.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// display buckets for keys
Mymap::size_type bs = c1.bucket('a');
std::cout << "bucket('a') == " << bs << std::endl;
std::cout << "bucket_size(" << bs << ") == " << c1.bucket_size(bs)
<< std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
bucket('a') == 7
bucket_size(7) == 1
unordered_multimap::bucket_count
Obtient le nombre de compartiments.
size_type bucket_count() const;
Notes
La fonction membre retourne le nombre actuel de comportements.
Exemple
// std__unordered_map__unordered_multimap_bucket_count.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect current parameters
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
// change max_load_factor and redisplay
c1.max_load_factor(0.10f);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
// rehash and redisplay
c1.rehash(100);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
bucket_count() == 8
load_factor() == 0.375
max_bucket_count() == 8
max_load_factor() == 4
bucket_count() == 8
load_factor() == 0.375
max_bucket_count() == 8
max_load_factor() == 0.1
bucket_count() == 128
load_factor() == 0.0234375
max_bucket_count() == 128
max_load_factor() == 0.1
unordered_multimap::bucket_size
Obtient la taille d’un compartiment.
size_type bucket_size(size_type nbucket) const;
Paramètres
nbucket
Numéro de compartiment.
Notes
Les fonctions membres retournent la taille du numéro de compartiment nbucket.
Exemple
// std__unordered_map__unordered_multimap_bucket_size.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// display buckets for keys
Mymap::size_type bs = c1.bucket('a');
std::cout << "bucket('a') == " << bs << std::endl;
std::cout << "bucket_size(" << bs << ") == " << c1.bucket_size(bs)
<< std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
bucket('a') == 7
bucket_size(7) == 1
unordered_multimap::cbegin
Retourne un itérateur const
qui traite le premier élément d'une plage.
const_iterator cbegin() const;
Valeur de retour
Itérateur forward const
qui pointe vers le premier élément de la plage, ou vers l'emplacement situé juste après la fin d'une plage vide (pour une plage vide : cbegin() == cend()
).
Notes
Avec la valeur de retour cbegin
, les éléments de la plage ne peuvent pas être modifiés.
Vous pouvez utiliser cette fonction membre à la place de la fonction membre begin()
afin de garantir que la valeur de retour est const_iterator
. En général, elle est utilisée conjointement avec le mot clé de déduction de type auto, comme le montre l’exemple suivant. Dans cet exemple, Container
est supposé être un conteneur modifiable (autre que const
) de type indéfini prenant en charge begin()
et cbegin()
.
auto i1 = Container.begin();
// i1 is Container<T>::iterator
auto i2 = Container.cbegin();
// i2 is Container<T>::const_iterator
unordered_multimap::cend
Retourne un itérateur const
qui traite l'emplacement situé immédiatement après le dernier élément d'une plage.
const_iterator cend() const;
Valeur de retour
Itérateur forward const
qui pointe juste après la fin de la plage.
Notes
cend
est utilisé pour vérifier si un itérateur a dépassé la fin de la plage.
Vous pouvez utiliser cette fonction membre à la place de la fonction membre end()
afin de garantir que la valeur de retour est const_iterator
. En général, elle est utilisée conjointement avec le mot clé de déduction de type auto, comme le montre l’exemple suivant. Dans cet exemple, Container
est supposé être un conteneur modifiable (autre que const
) de type indéfini prenant en charge end()
et cend()
.
auto i1 = Container.end();
// i1 is Container<T>::iterator
auto i2 = Container.cend();
// i2 is Container<T>::const_iterator
La valeur retournée par cend
ne doit pas être déréférencée.
unordered_multimap::clear
Supprime tous les éléments.
void clear();
Notes
La fonction membre appelle unordered_multimap ::erase(
unordered_multimap ::begin(),
unordered_multimap ::end.())
Exemple
// std__unordered_map__unordered_multimap_clear.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// clear the container and reinspect
c1.clear();
std::cout << "size == " << c1.size() << std::endl;
std::cout << "empty() == " << std::boolalpha << c1.empty() << std::endl;
std::cout << std::endl;
c1.insert(Mymap::value_type('d', 4));
c1.insert(Mymap::value_type('e', 5));
// display contents " [e 5] [d 4]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
std::cout << "size == " << c1.size() << std::endl;
std::cout << "empty() == " << std::boolalpha << c1.empty() << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
size == 0
empty() == true
[e, 5] [d, 4]
size == 2
empty() == false
unordered_multimap::const_iterator
Type d'un itérateur constant pour la séquence contrôlée.
typedef T1 const_iterator;
Notes
Le type décrit un objet pouvant servir d'itérateur vers l'avant constant pour la séquence contrôlée. Il est décrit ici comme un synonyme du type défini par l’implémentation T1
.
Exemple
// std__unordered_map__unordered_multimap_const_iterator.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
unordered_multimap::const_local_iterator
Type d’un itérateur de compartiment constant pour la séquence contrôlée.
typedef T5 const_local_iterator;
Notes
Le type décrit un objet pouvant servir d’itérateur de constante vers l’avant pour un compartiment. Il est décrit ici comme un synonyme du type défini par l’implémentation T5
.
Exemple
// std__unordered_map__unordered_multimap_const_local_iterator.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect bucket containing 'a'
Mymap::const_local_iterator lit = c1.begin(c1.bucket('a'));
std::cout << " [" << lit->first << ", " << lit->second << "]";
return (0);
}
[c, 3] [b, 2] [a, 1]
[a, 1]
unordered_multimap::const_pointer
Type d'un pointeur constant vers un élément.
typedef Alloc::const_pointer const_pointer;
Notes
Le type décrit un objet pouvant servir de pointeur constant à un élément de la séquence contrôlée.
Exemple
// std__unordered_map__unordered_multimap_const_pointer.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::iterator it = c1.begin();
it != c1.end(); ++it)
{
Mymap::const_pointer p = &*it;
std::cout << " [" << p->first << ", " << p->second << "]";
}
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
unordered_multimap::const_reference
Type d'une référence constante à un élément.
typedef Alloc::const_reference const_reference;
Notes
Le type décrit un objet pouvant servir de référence constante à un élément de la séquence contrôlée.
Exemple
// std__unordered_map__unordered_multimap_const_reference.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::iterator it = c1.begin();
it != c1.end(); ++it)
{
Mymap::const_reference ref = *it;
std::cout << " [" << ref.first << ", " << ref.second << "]";
}
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
unordered_multimap ::contains
Vérifie s’il existe un élément avec la clé spécifiée dans le unordered_multimap
.
bool contains(const Key& key) const;
template<class K> bool contains(const K& key) const;
Paramètres
K
Type de la clé.
key
Valeur de clé de l’élément à rechercher.
Valeur de retour
true
si l’élément est trouvé dans le conteneur ; false
autrement.
Notes
contains()
est nouveau en C++20. Pour l’utiliser, spécifiez l’option de compilateur /std :c++20 ou ultérieure.
template<class K> bool contains(const K& key) const
participe uniquement à la résolution de surcharge si key_compare
elle est transparente.
Exemple
// Requires /std:c++20 or /std:c++latest
#include <unordered_map>
#include <iostream>
int main()
{
std::unordered_multimap<int, bool> theUnorderedMultimap = {{0, false}, {1,true}};
std::cout << std::boolalpha; // so booleans show as 'true' or 'false'
std::cout << theUnorderedMultimap.contains(1) << '\n';
std::cout << theUnorderedMultimap.contains(2) << '\n';
return 0;
}
true
false
unordered_multimap::count
Recherche le nombre d’éléments qui correspondent à une clé spécifiée.
size_type count(const Key& keyval) const;
Paramètres
keyval
Valeur de clé à rechercher.
Notes
La fonction membre retourne le nombre d’éléments dans la plage délimitée par unordered_multimap::equal_range(keyval)
.
Exemple
// std__unordered_map__unordered_multimap_count.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
std::cout << "count('A') == " << c1.count('A') << std::endl;
std::cout << "count('b') == " << c1.count('b') << std::endl;
std::cout << "count('C') == " << c1.count('C') << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
count('A') == 0
count('b') == 1
count('C') == 0
unordered_multimap::difference_type
Type d'une distance signée entre deux éléments.
typedef T3 difference_type;
Notes
Le type d'entier signé décrit un objet qui peut représenter la différence entre les adresses de deux éléments quelconques dans la séquence contrôlée. Il est décrit ici comme un synonyme du type défini par l’implémentation T3
.
Exemple
// std__unordered_map__unordered_multimap_difference_type.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// compute positive difference
Mymap::difference_type diff = 0;
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
++diff;
std::cout << "end()-begin() == " << diff << std::endl;
// compute negative difference
diff = 0;
for (Mymap::const_iterator it = c1.end();
it != c1.begin(); --it)
--diff;
std::cout << "begin()-end() == " << diff << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
end()-begin() == 3
begin()-end() == -3
unordered_multimap::emplace
Insère un élément construit sur place (aucune opération de copie ni de déplacement n’est effectuée) avec un indicateur de positionnement.
template <class... Args>
iterator emplace(Args&&... args);
Paramètres
args
Arguments transférés pour construire un élément à insérer dans le unordered_multimap
.
Valeur de retour
Itérateur vers l’élément qui vient d’être inséré.
Notes
Aucune référence aux éléments conteneurs n’est invalidée par cette fonction, mais elle peut invalider tous les itérateurs du conteneur.
Le value_type d’un élément est une paire, si bien que la valeur d’un élément est une paire ordonnée dont le premier composant est égal à la valeur de clé et le deuxième à la valeur de données de l’élément.
Durant l’insertion, si une exception est levée mais qu’elle ne se produit pas dans la fonction de hachage du conteneur, le conteneur n’est pas modifié. Si l'exception est levée dans la fonction de hachage, le résultat n'est pas défini.
Pour obtenir un exemple de code, consultez multimap::emplace.
unordered_multimap::emplace_hint
Insère un élément construit sur place (aucune opération de copie ni de déplacement n’est effectuée) avec un indicateur de positionnement.
template <class... Args>
iterator emplace_hint(
const_iterator where,
Args&&... args);
Paramètres
args
Les arguments transférés pour construire un élément à insérer dans la classe unordered.
where
Indicateur concernant l’emplacement où commencer à rechercher le point d’insertion correct.
Valeur de retour
Itérateur vers l’élément qui vient d’être inséré.
Notes
Aucune référence aux éléments conteneurs n’est invalidée par cette fonction, mais elle peut invalider tous les itérateurs du conteneur.
Durant l’insertion, si une exception est levée mais qu’elle ne se produit pas dans la fonction de hachage du conteneur, le conteneur n’est pas modifié. Si l'exception est levée dans la fonction de hachage, le résultat n'est pas défini.
Le value_type d’un élément est une paire, si bien que la valeur d’un élément est une paire ordonnée dont le premier composant est égal à la valeur de clé et le deuxième à la valeur de données de l’élément.
Pour obtenir un exemple de code, consultez map::emplace_hint.
unordered_multimap::empty
Vérifie l'absence d'éléments.
bool empty() const;
Notes
La fonction membre retourne la valeur true pour une séquence contrôlée vide.
Exemple
// std__unordered_map__unordered_multimap_empty.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// clear the container and reinspect
c1.clear();
std::cout << "size == " << c1.size() << std::endl;
std::cout << "empty() == " << std::boolalpha << c1.empty() << std::endl;
std::cout << std::endl;
c1.insert(Mymap::value_type('d', 4));
c1.insert(Mymap::value_type('e', 5));
// display contents " [e 5] [d 4]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
std::cout << "size == " << c1.size() << std::endl;
std::cout << "empty() == " << std::boolalpha << c1.empty() << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
size == 0
empty() == true
[e, 5] [d, 4]
size == 2
empty() == false
unordered_multimap::end
Désigne la fin de la séquence contrôlée.
iterator end();
const_iterator end() const;
local_iterator end(size_type nbucket);
const_local_iterator end(size_type nbucket) const;
Paramètres
nbucket
Numéro de compartiment.
Notes
Les deux premières fonctions membres retournent un itérateur vers l'avant qui pointe juste après la fin de la séquence. Les deux dernières fonctions membres retournent un itérateur avant qui pointe juste au-delà de la fin du compartiment nbucket.
Exemple
// std__unordered_map__unordered_multimap_end.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect last two items " [a 1] [b 2]"
Mymap::iterator it2 = c1.end();
--it2;
std::cout << " [" << it2->first << ", " << it2->second << "]";
--it2;
std::cout << " [" << it2->first << ", " << it2->second << "]";
std::cout << std::endl;
// inspect bucket containing 'a'
Mymap::const_local_iterator lit = c1.end(c1.bucket('a'));
--lit;
std::cout << " [" << lit->first << ", " << lit->second << "]";
return (0);
}
[c, 3] [b, 2] [a, 1]
[a, 1] [b, 2]
[a, 1]
unordered_multimap::equal_range
Recherche une plage qui correspond à une clé spécifiée.
std::pair<iterator, iterator>
equal_range(const Key& keyval);
std::pair<const_iterator, const_iterator>
equal_range(const Key& keyval) const;
Paramètres
keyval
Valeur de clé à rechercher.
Notes
La fonction membre retourne une paire d’itérateurs X
de sorte que [X.first, X.second)
délimite uniquement les éléments de la séquence contrôlée qui ont un ordre équivalent avec keyval. Si aucun de ces éléments n’existe, les deux itérateurs sont end()
.
Exemple
// std__unordered_map__unordered_multimap_equal_range.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// display results of failed search
std::pair<Mymap::iterator, Mymap::iterator> pair1 =
c1.equal_range('x');
std::cout << "equal_range('x'):";
for (; pair1.first != pair1.second; ++pair1.first)
std::cout << " [" << pair1.first->first
<< ", " << pair1.first->second << "]";
std::cout << std::endl;
// display results of successful search
pair1 = c1.equal_range('b');
std::cout << "equal_range('b'):";
for (; pair1.first != pair1.second; ++pair1.first)
std::cout << " [" << pair1.first->first
<< ", " << pair1.first->second << "]";
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
equal_range('x'):
equal_range('b'): [b, 2]
unordered_multimap::erase
Supprime un élément ou une plage d’éléments dans une classe unordered_multimap aux positions spécifiées ou supprime les éléments qui correspondent à une clé spécifiée.
iterator erase(
const_iterator Where);
iterator erase(
const_iterator First,
const_iterator Last);
size_type erase(
const key_type& Key);
Paramètres
Where
Position de l’élément à supprimer.
First
Position du premier élément à supprimer.
Dernière
Position juste après le dernier élément à supprimer.
Clé
Valeur de clé des éléments à supprimer.
Valeur de retour
Pour les deux premières fonctions membres, itérateur bidirectionnel qui désigne le premier élément restant au-delà de tous les éléments supprimés, ou élément situé à la fin de l’objet map si aucun élément de ce type n’existe.
Pour la troisième fonction membre, retourne le nombre d’éléments qui ont été supprimés de la classe unordered_multimap.
Notes
Pour obtenir un exemple de code, consultez map::erase.
unordered_multimap::find
Recherche un élément qui correspond à une clé spécifiée.
const_iterator find(const Key& keyval) const;
Paramètres
keyval
Valeur de clé à rechercher.
Notes
La fonction membre retourne unordered_multimap::equal_range(keyval).first
.
Exemple
// std__unordered_map__unordered_multimap_find.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// try to find and fail
std::cout << "find('A') == "
<< std::boolalpha << (c1.find('A') != c1.end()) << std::endl;
// try to find and succeed
Mymap::iterator it = c1.find('b');
std::cout << "find('b') == "
<< std::boolalpha << (it != c1.end())
<< ": [" << it->first << ", " << it->second << "]" << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
find('A') == false
find('b') == true: [b, 2]
unordered_multimap::get_allocator
Obtient l’objet allocateur stocké.
Alloc get_allocator() const;
Notes
La fonction membre retourne l’objet d’allocateur stocké.
Exemple
// std__unordered_map__unordered_multimap_get_allocator.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
typedef std::allocator<std::pair<const char, int> > Myalloc;
int main()
{
Mymap c1;
Mymap::allocator_type al = c1.get_allocator();
std::cout << "al == std::allocator() is "
<< std::boolalpha << (al == Myalloc()) << std::endl;
return (0);
}
al == std::allocator() is true
unordered_multimap::hash_function
Obtient l'objet de fonction de hachage stocké.
Hash hash_function() const;
Notes
La fonction membre retourne l’objet de fonction de hachage stocké.
Exemple
// std__unordered_map__unordered_multimap_hash_function.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
Mymap::hasher hfn = c1.hash_function();
std::cout << "hfn('a') == " << hfn('a') << std::endl;
std::cout << "hfn('b') == " << hfn('b') << std::endl;
return (0);
}
hfn('a') == 1630279
hfn('b') == 1647086
unordered_multimap::hasher
Type de la fonction de hachage.
typedef Hash hasher;
Notes
Le type est un synonyme du paramètre de modèle Hash
.
Exemple
// std__unordered_map__unordered_multimap_hasher.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
Mymap::hasher hfn = c1.hash_function();
std::cout << "hfn('a') == " << hfn('a') << std::endl;
std::cout << "hfn('b') == " << hfn('b') << std::endl;
return (0);
}
hfn('a') == 1630279
hfn('b') == 1647086
unordered_multimap::insert
Insère un élément ou une plage d'éléments dans une classe unordered_multimap.
// (1) single element
pair<iterator, bool> insert(
const value_type& Val);
// (2) single element, perfect forwarded
template <class ValTy>
pair<iterator, bool>
insert(
ValTy&& Val);
// (3) single element with hint
iterator insert(
const_iterator Where,
const value_type& Val);
// (4) single element, perfect forwarded, with hint
template <class ValTy>
iterator insert(
const_iterator Where,
ValTy&& Val);
// (5) range
template <class InputIterator>
void insert(
InputIterator First,
InputIterator Last);
// (6) initializer list
void insert(
initializer_list<value_type>
IList);
Paramètres
Val
Valeur d'un élément à insérer dans la classe unordered_multimap.
Where
Emplacement où commencer à rechercher le point d'insertion correct.
ValTy
Paramètre de modèle qui spécifie le type d’argument que le unordered_multimap peut utiliser pour construire un élément de value_type, et perfect-forwards Val en tant qu’argument.
First
Position du premier élément à copier.
Dernière
Position juste au-delà du dernier élément à copier.
InputIterator
Argument de fonction de modèle qui remplit les conditions requises par un itérateur d’entrée qui pointe vers des éléments d’un type pouvant servir à construire des objets value_type.
IList
initializer_list à partir de laquelle copier les éléments.
Valeur de retour
Les fonctions membres d'insertion à un élément, (1) et (2), retournent un itérateur vers l'emplacement où le nouvel élément a été inséré dans la classe unordered_multimap.
Les fonctions membres à un élément avec indicateur, (3) et (4), retournent un itérateur qui pointe vers l'emplacement où le nouvel élément a été inséré dans la classe unordered_multimap.
Notes
Aucun pointeur ou référence n'est invalidé par cette fonction, mais elle peut invalider tous les itérateurs du conteneur.
Durant l'insertion d'un seul élément, si une exception est levée mais qu'elle ne se produit pas dans la fonction de hachage du conteneur, l'état du conteneur n'est pas modifié. Si l'exception est levée dans la fonction de hachage, le résultat n'est pas défini. Durant l'insertion de plusieurs éléments, si une exception est levée, le conteneur reste dans un état non spécifié mais valide.
Le value_type d’un conteneur est un typedef qui appartient au conteneur et, pour la classe map, map<K, V>::value_type
est pair<const K, V>
. La valeur d'un élément est une paire ordonnée dans laquelle le premier composant est égal à la valeur de clé et le second composant est égal à la valeur de données de l'élément.
La fonction membre de plage (5) insère la séquence de valeurs d’élément dans un unordered_multimap qui correspond à chaque élément traité par un itérateur dans la plage [First, Last)
; par conséquent, Last n’est pas inséré. La fonction membre de conteneur end()
fait référence à la position qui suit le dernier élément du conteneur. Par exemple, l'instruction m.insert(v.begin(), v.end());
insère tous les éléments de v
dans m
.
La fonction membre de liste d’initialiseurs (6) utilise un objet initializer_list pour copier des éléments dans l’objet unordered_multimap.
Pour l’insertion d’un élément construit sur place (aucune opération de copie ni de déplacement n’est effectuée), consultez unordered_multimap::emplace et unordered_multimap::emplace_hint.
Pour obtenir un exemple de code, consultez multimap::insert.
unordered_multimap::iterator
Type d'un itérateur pour la séquence contrôlée.
typedef T0 iterator;
Notes
Le type décrit un objet pouvant servir d’itérateur forward pour la séquence contrôlée. Il est décrit ici comme un synonyme du type défini par l’implémentation T0
.
Exemple
// std__unordered_map__unordered_multimap_iterator.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
unordered_multimap::key_eq
Obtient l'objet de fonction de comparaison stocké.
Pred key_eq() const;
Notes
La fonction membre retourne l’objet de fonction de comparaison stocké.
Exemple
// std__unordered_map__unordered_multimap_key_eq.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
Mymap::key_equal cmpfn = c1.key_eq();
std::cout << "cmpfn('a', 'a') == "
<< std::boolalpha << cmpfn('a', 'a') << std::endl;
std::cout << "cmpfn('a', 'b') == "
<< std::boolalpha << cmpfn('a', 'b') << std::endl;
return (0);
}
cmpfn('a', 'a') == true
cmpfn('a', 'b') == false
unordered_multimap::key_equal
Type de la fonction de comparaison.
typedef Pred key_equal;
Notes
Le type est un synonyme du paramètre de modèle Pred
.
Exemple
// std__unordered_map__unordered_multimap_key_equal.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
Mymap::key_equal cmpfn = c1.key_eq();
std::cout << "cmpfn('a', 'a') == "
<< std::boolalpha << cmpfn('a', 'a') << std::endl;
std::cout << "cmpfn('a', 'b') == "
<< std::boolalpha << cmpfn('a', 'b') << std::endl;
return (0);
}
cmpfn('a', 'a') == true
cmpfn('a', 'b') == false
unordered_multimap::key_type
Type d'une clé de tri.
typedef Key key_type;
Notes
Le type est un synonyme du paramètre de modèle Key
.
Exemple
// std__unordered_map__unordered_multimap_key_type.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// add a value and reinspect
Mymap::key_type key = 'd';
Mymap::mapped_type mapped = 4;
Mymap::value_type val = Mymap::value_type(key, mapped);
c1.insert(val);
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
[d, 4] [c, 3] [b, 2] [a, 1]
unordered_multimap::load_factor
Compte le nombre moyen d'éléments par compartiment.
float load_factor() const;
Notes
La fonction membre retourne (float)
unordered_multimap::size() / (float)
unordered_multimap::bucket_count()
, le nombre moyen d’éléments par compartiment.
Exemple
// std__unordered_map__unordered_multimap_load_factor.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect current parameters
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
// change max_load_factor and redisplay
c1.max_load_factor(0.10f);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
// rehash and redisplay
c1.rehash(100);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
return (0);
}
unordered_multimap::local_iterator
Type d'un itérateur de compartiment.
typedef T4 local_iterator;
Notes
Le type décrit un objet pouvant servir d'itérateur vers l'avant pour un compartiment. Il est décrit ici comme un synonyme du type défini par l’implémentation T4
.
Exemple
// std__unordered_map__unordered_multimap_local_iterator.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect bucket containing 'a'
Mymap::local_iterator lit = c1.begin(c1.bucket('a'));
std::cout << " [" << lit->first << ", " << lit->second << "]";
return (0);
}
[c, 3] [b, 2] [a, 1]
[a, 1]
unordered_multimap::mapped_type
Type d'une valeur mappée associée à chaque clé.
typedef Ty mapped_type;
Notes
Le type est un synonyme du paramètre de modèle Ty
.
Exemple
// std__unordered_map__unordered_multimap_mapped_type.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// add a value and reinspect
Mymap::key_type key = 'd';
Mymap::mapped_type mapped = 4;
Mymap::value_type val = Mymap::value_type(key, mapped);
c1.insert(val);
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
[d, 4] [c, 3] [b, 2] [a, 1]
unordered_multimap::max_bucket_count
Obtient le nombre maximal de compartiments.
size_type max_bucket_count() const;
Notes
La fonction membre retourne le nombre maximal de compartiments actuellement autorisés.
Exemple
// std__unordered_map__unordered_multimap_max_bucket_count.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect current parameters
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
// change max_load_factor and redisplay
c1.max_load_factor(0.10f);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
// rehash and redisplay
c1.rehash(100);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
bucket_count() == 8
load_factor() == 0.375
max_bucket_count() == 8
max_load_factor() == 4
bucket_count() == 8
load_factor() == 0.375
max_bucket_count() == 8
max_load_factor() == 0.1
bucket_count() == 128
load_factor() == 0.0234375
max_bucket_count() == 128
max_load_factor() == 0.1
unordered_multimap::max_load_factor
Obtient ou définit le nombre maximal d’éléments par compartiment.
float max_load_factor() const;
void max_load_factor(float factor);
Paramètres
facteur
Nouveau facteur de charge maximale.
Notes
La première fonction membre retourne le facteur de charge maximale stockée. La deuxième fonction membre remplace le facteur de charge maximal stocké par le facteur.
Exemple
// std__unordered_map__unordered_multimap_max_load_factor.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect current parameters
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
// change max_load_factor and redisplay
c1.max_load_factor(0.10f);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
// rehash and redisplay
c1.rehash(100);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_bucket_count() == "
<< c1.max_bucket_count() << std::endl;
std::cout << "max_load_factor() == "
<< c1.max_load_factor() << std::endl;
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
bucket_count() == 8
load_factor() == 0.375
max_bucket_count() == 8
max_load_factor() == 4
bucket_count() == 8
load_factor() == 0.375
max_bucket_count() == 8
max_load_factor() == 0.1
bucket_count() == 128
load_factor() == 0.0234375
max_bucket_count() == 128
max_load_factor() == 0.1
unordered_multimap::max_size
Obtient ou définit la taille maximale de la séquence contrôlée.
size_type max_size() const;
Notes
La fonction membre retourne la longueur de la séquence la plus longue que l'objet peut contrôler.
Exemple
// std__unordered_map__unordered_multimap_max_size.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
std::cout << "max_size() == " << c1.max_size() << std::endl;
return (0);
}
max_size() == 536870911
unordered_multimap::operator=
Copie une table de hachage.
unordered_multimap& operator=(const unordered_multimap& right);
unordered_multimap& operator=(unordered_multimap&& right);
Paramètres
right
En unordered_multimap
cours de copie dans le unordered_multimap
.
Notes
Après l’effacement d’éléments existants dans un unordered_multimap, operator=
copie ou déplace le contenu de droite dans la unordered_multimap.
Exemple
// unordered_multimap_operator_as.cpp
// compile with: /EHsc
#include <unordered_multimap>
#include <iostream>
int main( )
{
using namespace std;
unordered_multimap<int, int> v1, v2, v3;
unordered_multimap<int, int>::iterator iter;
v1.insert(pair<int, int>(1, 10));
cout << "v1 = " ;
for (iter = v1.begin(); iter != v1.end(); iter++)
cout << iter->second << " ";
cout << endl;
v2 = v1;
cout << "v2 = ";
for (iter = v2.begin(); iter != v2.end(); iter++)
cout << iter->second << " ";
cout << endl;
// move v1 into v2
v2.clear();
v2 = move(v1);
cout << "v2 = ";
for (iter = v2.begin(); iter != v2.end(); iter++)
cout << iter->second << " ";
cout << endl;
}
unordered_multimap::pointer
Type d'un pointeur vers un élément.
typedef Alloc::pointer pointer;
Notes
Le type décrit un objet pouvant servir de pointeur vers un élément de la séquence contrôlée.
Exemple
// std__unordered_map__unordered_multimap_pointer.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::iterator it = c1.begin();
it != c1.end(); ++it)
{
Mymap::pointer p = &*it;
std::cout << " [" << p->first << ", " << p->second << "]";
}
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
unordered_multimap::reference
Type d'une référence à un élément.
typedef Alloc::reference reference;
Notes
Le type décrit un objet qui peut servir de référence à un élément de la séquence contrôlée.
Exemple
// std__unordered_map__unordered_multimap_reference.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::iterator it = c1.begin();
it != c1.end(); ++it)
{
Mymap::reference ref = *it;
std::cout << " [" << ref.first << ", " << ref.second << "]";
}
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
unordered_multimap::rehash
Régénère la table de hachage.
void rehash(size_type nbuckets);
Paramètres
nbuckets
Nombre de compartiments demandés.
Notes
La fonction membre modifie le nombre de compartiments qui doivent être au moins des nbuckets et régénère la table de hachage si nécessaire.
Exemple
// std__unordered_map__unordered_multimap_rehash.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// inspect current parameters
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_load_factor() == " << c1.max_load_factor() << std::endl;
std::cout << std::endl;
// change max_load_factor and redisplay
c1.max_load_factor(0.10f);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_load_factor() == " << c1.max_load_factor() << std::endl;
std::cout << std::endl;
// rehash and redisplay
c1.rehash(100);
std::cout << "bucket_count() == " << c1.bucket_count() << std::endl;
std::cout << "load_factor() == " << c1.load_factor() << std::endl;
std::cout << "max_load_factor() == " << c1.max_load_factor() << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
bucket_count() == 8
load_factor() == 0.375
max_load_factor() == 4
bucket_count() == 8
load_factor() == 0.375
max_load_factor() == 0.1
bucket_count() == 128
load_factor() == 0.0234375
max_load_factor() == 0.1
unordered_multimap::size
Compte le nombre d'éléments.
size_type size() const;
Notes
La fonction membre retourne la longueur de la séquence contrôlée.
Exemple
// std__unordered_map__unordered_multimap_size.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// clear the container and reinspect
c1.clear();
std::cout << "size == " << c1.size() << std::endl;
std::cout << "empty() == " << std::boolalpha << c1.empty() << std::endl;
std::cout << std::endl;
c1.insert(Mymap::value_type('d', 4));
c1.insert(Mymap::value_type('e', 5));
// display contents " [e 5] [d 4]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
std::cout << "size == " << c1.size() << std::endl;
std::cout << "empty() == " << std::boolalpha << c1.empty() << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
size == 0
empty() == true
[e, 5] [d, 4]
size == 2
empty() == false
unordered_multimap::size_type
Type d'une distance non signée entre deux éléments.
typedef T2 size_type;
Notes
Le type d'entier non signé décrit un objet qui peut représenter la longueur de n'importe quelle séquence contrôlée. Il est décrit ici comme un synonyme du type défini par l’implémentation T2
.
Exemple
// std__unordered_map__unordered_multimap_size_type.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
Mymap::size_type sz = c1.size();
std::cout << "size == " << sz << std::endl;
return (0);
}
size == 0
unordered_multimap::swap
Échange le contenu de deux conteneurs.
void swap(unordered_multimap& right);
Paramètres
right
Conteneur avec lequel faire l’échange.
Notes
La fonction membre échange les séquences contrôlées entre *this
et droite. Si unordered_multimap::get_allocator() == right.get_allocator()
, elle le fait en un temps constant, elle lève une exception seulement dans le cas de la copie de l’objet traits stocké de type Tr
, et n’invalide aucune référence, ni aucun pointeur ou itérateur, qui désigne des éléments dans les deux séquences contrôlées. Sinon, elle effectue un nombre d’affectations d’éléments et d’appels de constructeurs proportionnel au nombre d’éléments dans les deux séquences contrôlées.
Exemple
// std__unordered_map__unordered_multimap_swap.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
Mymap c2;
c2.insert(Mymap::value_type('d', 4));
c2.insert(Mymap::value_type('e', 5));
c2.insert(Mymap::value_type('f', 6));
c1.swap(c2);
// display contents " [f 6] [e 5] [d 4]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
swap(c1, c2);
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
[f, 6] [e, 5] [d, 4]
[c, 3] [b, 2] [a, 1]
unordered_multimap::unordered_multimap
Construit un objet conteneur.
unordered_multimap(
const unordered_multimap& Right);
explicit unordered_multimap(
size_type Bucket_count = N0,
const Hash& Hash = Hash(),
const Comp& Comp = Pred(),
const Allocator& Al = Alloc());
unordered_multimap(
unordered_multimap&& Right);
unordered_multimap(
initializer_list<Type> IList);
unordered_multimap(
initializer_list<Type> IList,
size_type Bucket_count);
unordered_multimap(
initializer_list<Type> IList,
size_type Bucket_count,
const Hash& Hash);
unordered_multimap(
initializer_list<Type> IList,
size_type Bucket_count,
const Hash& Hash,
const Key& Key);
unordered_multimap(
initializer_list<Type> IList,
size_type Bucket_count,
const Hash& Hash,
const Key& Key,
const Allocator& Al);
template <class InputIterator>
unordered_multimap(
InputIterator first,
InputIterator last,
size_type Bucket_count = N0,
const Hash& Hash = Hash(),
const Comp& Comp = Pred(),
const Allocator& Al = Alloc());
Paramètres
InputIterator
Type d'itérateur.
Al
Objet allocateur à stocker.
Comp
Objet de fonction de comparaison à stocker.
Hash
Objet de fonction de hachage à stocker.
Bucket_count
Nombre minimal de compartiments.
Right
Conteneur à copier.
IList
Initializer_list depuis laquelle copier les éléments.
Notes
Le premier constructeur spécifie une copie de la séquence contrôlée par Right. Le deuxième constructeur spécifie une séquence vide contrôlée. Le troisième constructeur spécifie une copie de la séquence en déplaçant Right. Le quatrième, le cinquième, le sixième, le septième et le huitième constructeurs utilisent une initializer_list pour les membres. Le neuvième constructeur insère la séquence de valeurs d'éléments [First, Last)
.
Tous les constructeurs initialisent également plusieurs valeurs stockées. Pour le constructeur de copie, les valeurs sont obtenues à partir de Right. Autrement :
Le nombre minimal de compartiments est l’argument Bucket_count, le cas échéant ; sinon, il s’agit d’une valeur par défaut décrite ici comme valeur N0
définie par l’implémentation.
L’objet de fonction de hachage est l’argument Hash, s’il est présent ; sinon, il s’agit Hash()
.
L’objet de fonction de comparaison est l’argument Comp, le cas échéant ; sinon, il s’agit Pred()
.
L’objet allocator est l’argument Al, s’il est présent ; sinon, il est Alloc()
.
Exemple
// std__unordered_map__unordered_multimap_construct.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
using namespace std;
using Mymap = unordered_multimap<char, int> ;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (const auto& c : c1) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
Mymap c2(8,
hash<char>(),
equal_to<char>(),
allocator<pair<const char, int> >());
c2.insert(Mymap::value_type('d', 4));
c2.insert(Mymap::value_type('e', 5));
c2.insert(Mymap::value_type('f', 6));
// display contents " [f 6] [e 5] [d 4]"
for (const auto& c : c2) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
Mymap c3(c1.begin(),
c1.end(),
8,
hash<char>(),
equal_to<char>(),
allocator<pair<const char, int> >());
// display contents " [c 3] [b 2] [a 1]"
for (const auto& c : c3) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
Mymap c4(move(c3));
// display contents " [c 3] [b 2] [a 1]"
for (const auto& c : c4) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
// Construct with an initializer_list
unordered_multimap<int, char> c5({ { 5, 'g' }, { 6, 'h' }, { 7, 'i' }, { 8, 'j' } });
for (const auto& c : c5) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
// Initializer_list plus size
unordered_multimap<int, char> c6({ { 5, 'g' }, { 6, 'h' }, { 7, 'i' }, { 8, 'j' } }, 4);
for (const auto& c : c1) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
// Initializer_list plus size and hash
unordered_multimap<int, char, hash<char>> c7(
{ { 5, 'g' }, { 6, 'h' }, { 7, 'i' }, { 8, 'j' } },
4,
hash<char>()
);
for (const auto& c : c1) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
// Initializer_list plus size, hash, and key_equal
unordered_multimap<int, char, hash<char>, equal_to<char>> c8(
{ { 5, 'g' }, { 6, 'h' }, { 7, 'i' }, { 8, 'j' } },
4,
hash<char>(),
equal_to<char>()
);
for (const auto& c : c1) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
// Initializer_list plus size, hash, key_equal, and allocator
unordered_multimap<int, char, hash<char>, equal_to<char>> c9(
{ { 5, 'g' }, { 6, 'h' }, { 7, 'i' }, { 8, 'j' } },
4,
hash<char>(),
equal_to<char>(),
allocator<pair<const char, int> >()
);
for (const auto& c : c1) {
cout << " [" << c.first << ", " << c.second << "]";
}
cout << endl;
}
[a, 1] [b, 2] [c, 3] [d, 4] [e, 5] [f, 6] [a, 1] [b, 2] [c, 3] [a, 1] [b, 2] [c, 3] [5, g] [6, h] [7, i] [8, j] [a, 1] [b, 2] [c, 3] [a, 1] [b, 2] [c, 3] [a, 1] [b, 2] [c, 3] [a, 1] [b, 2] [c, 3] [c, 3] [b, 2] [a, 1]
[f, 6] [e, 5] [d, 4]
[c, 3] [b, 2] [a, 1]
[c, 3] [b, 2] [a, 1]
unordered_multimap::value_type
Type d’un élément.
typedef std::pair<const Key, Ty> value_type;
Notes
Ce type décrit un élément de la séquence contrôlée.
Exemple
// std__unordered_map__unordered_multimap_value_type.cpp
// compile with: /EHsc
#include <unordered_map>
#include <iostream>
typedef std::unordered_multimap<char, int> Mymap;
int main()
{
Mymap c1;
c1.insert(Mymap::value_type('a', 1));
c1.insert(Mymap::value_type('b', 2));
c1.insert(Mymap::value_type('c', 3));
// display contents " [c 3] [b 2] [a 1]"
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
// add a value and reinspect
Mymap::key_type key = 'd';
Mymap::mapped_type mapped = 4;
Mymap::value_type val = Mymap::value_type(key, mapped);
c1.insert(val);
for (Mymap::const_iterator it = c1.begin();
it != c1.end(); ++it)
std::cout << " [" << it->first << ", " << it->second << "]";
std::cout << std::endl;
return (0);
}
[c, 3] [b, 2] [a, 1]
[d, 4] [c, 3] [b, 2] [a, 1]
Voir aussi
<unordered_map>
conteneurs
Sécurité des threads dans la bibliothèque C++ Standard
Informations de référence sur la bibliothèque standard C++