microsoftml.extract_pixels : extrait les pixels d’une image
Usage
microsoftml.extract_pixels(cols: [str, dict, list],
use_alpha: bool = False, use_red: bool = True,
use_green: bool = True, use_blue: bool = True,
interleave_argb: bool = False, convert: bool = True,
offset: float = None, scale: float = None, **kargs)
Description
Extrait les valeurs en pixels d’une image.
Détails
extract_pixels
extrait les valeurs en pixels d’une image. Les variables d’entrée sont des images de la même taille, en général la sortie d’une transformation resizeImage
. La sortie est une donnée de type pixel sous forme vectorielle qui est généralement utilisée en tant que caractéristique pour un apprenant.
Arguments
cols
Chaîne de caractères ou liste de noms de variables à transformer. Si dict
, les clés représentent les noms des nouvelles variables à créer.
use_alpha
Spécifie s’il faut utiliser le canal alpha. La valeur par défaut est False
.
use_red
Spécifie s’il faut utiliser le canal rouge. La valeur par défaut est True
.
use_green
Spécifie s’il faut utiliser le canal vert. La valeur par défaut est True
.
use_blue
Spécifie s’il faut utiliser le canal bleu. La valeur par défaut est True
.
interleave_argb
Spécifie s’il faut séparer chaque canal ou les entrelacer dans l’ordre ARVB. Cela peut être important, par exemple, si vous formez un réseau neuronal convolutif, car cela affecterait la forme du noyau, le stride, etc.
convert
Valeur à convertir en nombre à virgule flottante. La valeur par défaut est False
.
offset
Spécifie le décalage (pré-échelle). Cela nécessite convert = True
.
La valeur par défaut est Aucun.
scale
Spécifie le facteur d’échelle. Cela nécessite convert = True
.
La valeur par défaut est Aucun.
kargs
Arguments supplémentaires envoyés au moteur de calcul.
Retours
Objet définissant la transformation.
Voir aussi
load_image
, resize_image
, featurize_image
.
Exemple
'''
Example with images.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear
from microsoftml import load_image, resize_image, extract_pixels
from microsoftml.datasets.image import get_RevolutionAnalyticslogo
train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], Label=[True]))
# Loads the images from variable Path, resizes the images to 1x1 pixels
# and trains a neural net.
model1 = rx_neural_network("Label ~ Features", data=train,
ml_transforms=[
load_image(cols=dict(Features="Path")),
resize_image(cols="Features", width=1, height=1, resizing="Aniso"),
extract_pixels(cols="Features")],
ml_transform_vars=["Path"],
num_hidden_nodes=1, num_iterations=1)
# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
# If dnnModel == "AlexNet", the image has to be resized to 227x227.
model2 = rx_fast_linear("Label ~ Features ", data=train,
ml_transforms=[
load_image(cols=dict(Features="Path")),
resize_image(cols="Features", width=224, height=224),
extract_pixels(cols="Features")],
ml_transform_vars=["Path"], max_iterations=1)
# We predict even if it does not make too much sense on this single image.
print("\nrx_neural_network")
prediction1 = rx_predict(model1, data=train)
print(prediction1)
print("\nrx_fast_linear")
prediction2 = rx_predict(model2, data=train)
print(prediction2)
Sortie :
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math
***** Net definition *****
input Data [3];
hidden H [1] sigmoid { // Depth 1
from Data all;
}
output Result [1] sigmoid { // Depth 0
from H all;
}
***** End net definition *****
Input count: 3
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 6 Weights...
Estimated Pre-training MeanError = 0.707823
Iter:1/1, MeanErr=0.707823(0.00%), 0.00M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.707499
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.2716496
Elapsed time: 00:00:00.0396484
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using 2 threads to train.
Automatically choosing a check frequency of 2.
Auto-tuning parameters: L2 = 5.
Auto-tuning parameters: L1Threshold (L1/L2) = 1.
Using model from last iteration.
Not training a calibrator because it is not needed.
Elapsed time: 00:00:01.0508885
Elapsed time: 00:00:00.0133784
rx_neural_network
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.1339430
Finished writing 1 rows.
Writing completed.
PredictedLabel Score Probability
0 False -0.028504 0.492875
rx_fast_linear
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.4977487
Finished writing 1 rows.
Writing completed.
PredictedLabel Score Probability
0 False 0.0 0.5