Remarque
L’accès à cette page nécessite une autorisation. Vous pouvez essayer de vous connecter ou de modifier des répertoires.
L’accès à cette page nécessite une autorisation. Vous pouvez essayer de modifier des répertoires.
La recherche de fichiers permet aux agents de rechercher des informations pertinentes via des fichiers chargés. Cet outil est particulièrement utile pour créer des agents qui peuvent répondre à des questions sur les documents, analyser le contenu des fichiers et extraire des informations.
Note
La disponibilité de la recherche de fichiers dépend du fournisseur d’agent sous-jacent. Consultez La vue d’ensemble des fournisseurs pour obtenir une prise en charge spécifique au fournisseur.
L’exemple suivant montre comment créer un agent avec l’outil Recherche de fichiers :
using System;
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.Agents.AI;
using Microsoft.Extensions.AI;
// Requires: dotnet add package Microsoft.Agents.AI.OpenAI --prerelease
var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT")
?? throw new InvalidOperationException("AZURE_OPENAI_ENDPOINT is not set.");
var deploymentName = Environment.GetEnvironmentVariable("AZURE_OPENAI_DEPLOYMENT_NAME") ?? "gpt-4o-mini";
// Create an agent with the file search hosted tool
// Provide vector store IDs containing your uploaded documents
AIAgent agent = new AzureOpenAIClient(new Uri(endpoint), new AzureCliCredential())
.GetChatClient(deploymentName)
.AsAIAgent(
instructions: "You are a helpful assistant that searches through files to find information.",
tools: [new FileSearchToolDefinition(vectorStoreIds: ["<your-vector-store-id>"])]);
Console.WriteLine(await agent.RunAsync("What does the document say about today's weather?"));
L’exemple suivant montre comment créer un agent avec l’outil Recherche de fichiers et des exemples de documents :
Définir des exemples de documents
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from agent_framework import Agent, Content
from agent_framework.openai import OpenAIResponsesClient
"""
OpenAI Responses Client with File Search Example
This sample demonstrates using get_file_search_tool() with OpenAI Responses Client
for direct document-based question answering and information retrieval.
"""
# Helper functions
async def create_vector_store(client: OpenAIResponsesClient) -> tuple[str, Content]:
"""Create a vector store with sample documents."""
file = await client.client.files.create(
file=("todays_weather.txt", b"The weather today is sunny with a high of 75F."), purpose="user_data"
)
vector_store = await client.client.vector_stores.create(
name="knowledge_base",
expires_after={"anchor": "last_active_at", "days": 1},
)
result = await client.client.vector_stores.files.create_and_poll(vector_store_id=vector_store.id, file_id=file.id)
if result.last_error is not None:
raise Exception(f"Vector store file processing failed with status: {result.last_error.message}")
return file.id, Content.from_hosted_vector_store(vector_store_id=vector_store.id)
async def delete_vector_store(client: OpenAIResponsesClient, file_id: str, vector_store_id: str) -> None:
"""Delete the vector store after using it."""
await client.client.vector_stores.delete(vector_store_id=vector_store_id)
await client.client.files.delete(file_id=file_id)
async def main() -> None:
client = OpenAIResponsesClient()
message = "What is the weather today? Do a file search to find the answer."
stream = False
print(f"User: {message}")
file_id, vector_store_id = await create_vector_store(client)
agent = Agent(
client=client,
instructions="You are a helpful assistant that can search through files to find information.",
tools=[client.get_file_search_tool(vector_store_ids=[vector_store_id])],
)
if stream:
print("Assistant: ", end="")
async for chunk in agent.run(message, stream=True):
if chunk.text:
print(chunk.text, end="")
print("")
else:
response = await agent.run(message)
print(f"Assistant: {response}")
await delete_vector_store(client, file_id, vector_store_id)
if __name__ == "__main__":
asyncio.run(main())
Exécuter l’agent
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from agent_framework import Agent, Content
from agent_framework.openai import OpenAIResponsesClient
"""
OpenAI Responses Client with File Search Example
This sample demonstrates using get_file_search_tool() with OpenAI Responses Client
for direct document-based question answering and information retrieval.
"""
# Helper functions
async def create_vector_store(client: OpenAIResponsesClient) -> tuple[str, Content]:
"""Create a vector store with sample documents."""
file = await client.client.files.create(
file=("todays_weather.txt", b"The weather today is sunny with a high of 75F."), purpose="user_data"
)
vector_store = await client.client.vector_stores.create(
name="knowledge_base",
expires_after={"anchor": "last_active_at", "days": 1},
)
result = await client.client.vector_stores.files.create_and_poll(vector_store_id=vector_store.id, file_id=file.id)
if result.last_error is not None:
raise Exception(f"Vector store file processing failed with status: {result.last_error.message}")
return file.id, Content.from_hosted_vector_store(vector_store_id=vector_store.id)
async def delete_vector_store(client: OpenAIResponsesClient, file_id: str, vector_store_id: str) -> None:
"""Delete the vector store after using it."""
await client.client.vector_stores.delete(vector_store_id=vector_store_id)
await client.client.files.delete(file_id=file_id)
async def main() -> None:
client = OpenAIResponsesClient()
message = "What is the weather today? Do a file search to find the answer."
stream = False
print(f"User: {message}")
file_id, vector_store_id = await create_vector_store(client)
agent = Agent(
client=client,
instructions="You are a helpful assistant that can search through files to find information.",
tools=[client.get_file_search_tool(vector_store_ids=[vector_store_id])],
)
if stream:
print("Assistant: ", end="")
async for chunk in agent.run(message, stream=True):
if chunk.text:
print(chunk.text, end="")
print("")
else:
response = await agent.run(message)
print(f"Assistant: {response}")
await delete_vector_store(client, file_id, vector_store_id)
if __name__ == "__main__":
asyncio.run(main())