Entité de machine learning
Important
LUIS sera mis hors service le 1er octobre 2025 et à partir du 1er avril 2023, vous ne pourrez plus créer de nouvelles ressources LUIS. Nous vous recommandons de migrer vos applications LUIS vers la compréhension du langage courant pour tirer parti de la prise en charge continue des produits et des fonctionnalités multilingues.
L’entité de machine-learning est l’entité préférée pour la création d’applications LUIS.
Exemple JSON
Supposons que l’application utilise des commandes de pizzas, telles que le didacticiel d’entité décomposable. Chaque commande peut inclure diverses pizzas, y compris des tailles différentes.
Les exemples d’énoncés sont les suivants :
Exemples d’énoncés pour l’application pizza |
---|
Can I get a pepperoni pizza and a can of coke please |
can I get a small pizza with onions peppers and olives |
pickup an extra large meat lovers pizza |
Il ne s’agit là que d’un exemple, car une entité de machine-learning peut disposer de nombreuses sous-entités avec des fonctionnalités requises. Il doit être considéré comme un guide pour le résultat produit par votre entité.
Considérez la requête :
deliver 1 large cheese pizza on thin crust and 2 medium pepperoni pizzas on deep dish crust
Il s’agit du JSON si verbose=false
est défini dans la chaîne de requête :
"entities": {
"Order": [
{
"FullPizzaWithModifiers": [
{
"PizzaType": [
"cheese pizza"
],
"Size": [
[
"Large"
]
],
"Quantity": [
1
]
},
{
"PizzaType": [
"pepperoni pizzas"
],
"Size": [
[
"Medium"
]
],
"Quantity": [
2
],
"Crust": [
[
"Deep Dish"
]
]
}
]
}
],
"ToppingList": [
[
"Cheese"
],
[
"Pepperoni"
]
],
"CrustList": [
[
"Thin"
]
]
}
Il s’agit du JSON si verbose=true
est défini dans la chaîne de requête :
"entities": {
"Order": [
{
"FullPizzaWithModifiers": [
{
"PizzaType": [
"cheese pizza"
],
"Size": [
[
"Large"
]
],
"Quantity": [
1
],
"$instance": {
"PizzaType": [
{
"type": "PizzaType",
"text": "cheese pizza",
"startIndex": 16,
"length": 12,
"score": 0.999998868,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Size": [
{
"type": "SizeList",
"text": "large",
"startIndex": 10,
"length": 5,
"score": 0.998720646,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Quantity": [
{
"type": "builtin.number",
"text": "1",
"startIndex": 8,
"length": 1,
"score": 0.999878645,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
},
{
"PizzaType": [
"pepperoni pizzas"
],
"Size": [
[
"Medium"
]
],
"Quantity": [
2
],
"Crust": [
[
"Deep Dish"
]
],
"$instance": {
"PizzaType": [
{
"type": "PizzaType",
"text": "pepperoni pizzas",
"startIndex": 56,
"length": 16,
"score": 0.999987066,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Size": [
{
"type": "SizeList",
"text": "medium",
"startIndex": 49,
"length": 6,
"score": 0.999841452,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Quantity": [
{
"type": "builtin.number",
"text": "2",
"startIndex": 47,
"length": 1,
"score": 0.9996054,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Crust": [
{
"type": "CrustList",
"text": "deep dish crust",
"startIndex": 76,
"length": 15,
"score": 0.761551,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}
],
"$instance": {
"FullPizzaWithModifiers": [
{
"type": "FullPizzaWithModifiers",
"text": "1 large cheese pizza on thin crust",
"startIndex": 8,
"length": 34,
"score": 0.616001546,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
},
{
"type": "FullPizzaWithModifiers",
"text": "2 medium pepperoni pizzas on deep dish crust",
"startIndex": 47,
"length": 44,
"score": 0.7395033,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}
],
"ToppingList": [
[
"Cheese"
],
[
"Pepperoni"
]
],
"CrustList": [
[
"Thin"
]
],
"$instance": {
"Order": [
{
"type": "Order",
"text": "1 large cheese pizza on thin crust and 2 medium pepperoni pizzas on deep dish crust",
"startIndex": 8,
"length": 83,
"score": 0.6881274,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"ToppingList": [
{
"type": "ToppingList",
"text": "cheese",
"startIndex": 16,
"length": 6,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
},
{
"type": "ToppingList",
"text": "pepperoni",
"startIndex": 56,
"length": 9,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"CrustList": [
{
"type": "CrustList",
"text": "thin crust",
"startIndex": 32,
"length": 10,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}
Étapes suivantes
Apprenez-en davantage sur l’entité de machine-learning, notamment avec un tutoriel, des concepts et un guide pratique.
Découvrez les entités de liste et d’expression régulière.