Partager via


Interroger les journaux à partir de Container insights

Container Insights collecte des métriques de performances, des données d’inventaire et des informations sur l’état d’intégrité à partir d’hôtes de conteneur et de conteneurs. Les données sont collectées toutes les trois minutes et transférées à l’espace de travail Log Analytics dans Azure Monitor où elles sont disponibles pour les requêtes de journal à l’aide de Log Analytics dans Azure Monitor

Vous pouvez appliquer ces données à divers scénarios tels que la planification de la migration, l’analyse de la capacité, la détection et la résolution de problèmes de performances à la demande. Les journaux Azure Monitor peuvent vous aider à rechercher des tendances, à diagnostiquer les goulots d’étranglement, à effectuer des prévisions ou à mettre en corrélation des données afin de déterminer si la configuration de cluster actuelle garantit des performances optimales.

Pour obtenir des informations sur l’utilisation de ces requêtes, consultez Utilisation de requêtes dans Azure Monitor Log Analytics. Pour suivre un tutoriel complet sur l’utilisation de Log Analytics pour exécuter des requêtes et utiliser leurs résultats, consultez Tutoriel sur Log Analytics.

Important

Les requêtes de cet article dépendent des données collectées par Container Insights et sont stockées dans un espace de travail Log Analytics. Si vous avez modifié les paramètres de collecte de données par défaut, les requêtes peuvent ne pas retourner les résultats attendus. Plus particulièrement, si vous avez désactivé la collecte des données de performances depuis que vous avez activé les métriques Prometheus pour le cluster, toutes les requêtes utilisant la table Perf ne retourneront pas de résultats.

Consultez Configurer la collecte de données dans Container Insights à l’aide d’une règle de collecte de données pour les configurations prédéfinies, notamment la désactivation de la collecte de données de performances. Consultez Configurer la collecte de données dans Container Insights à l’aide de ConfigMap pour obtenir d’autres options de collecte de données.

Ouvrir Log Analytics

Il existe plusieurs options pour démarrer Log Analytics. Chaque option commence par une étendue différente. Pour accéder à toutes les données de l'espace de travail, dans le menu Analyse, sélectionnez Journaux. Pour limiter les données à un seul cluster Kubernetes, sélectionnez Journaux dans le menu de ce cluster.

Capture d'écran qui montre le démarrage de Log Analytics.

Requêtes de journal existantes

Vous n’êtes pas tenu de savoir écrire une requête de journal pour utiliser Log Analytics. Vous pouvez sélectionner parmi plusieurs requêtes prédéfinies. Vous pouvez soit exécuter les requêtes sans modification, soit les utiliser comme point de départ d'une requête personnalisée. Sélectionnez Requêtes en haut de l’écran Log Analytics et affichez les requêtes avec un type de ressource de Kubernetes Services.

Capture d'écran qui montre les requêtes Log Analytics pour Kubernetes.

Tables de conteneurs

Pour obtenir une liste des tables et leurs descriptions détaillées utilisées par Container insights, consultez la référence des tables Azure Monitor. Toutes ces tables sont disponibles pour les requêtes de journal.

Exemples de requêtes de journal

Il est souvent utile de créer des requêtes en commençant par un exemple ou deux, puis en les modifiant afin de les adapter à vos besoins. Pour créer des requêtes plus avancées, vous pouvez utiliser les exemples de requêtes suivants.

Liste de toutes les informations sur le cycle de vie d’un conteneur

ContainerInventory
| project Computer, Name, Image, ImageTag, ContainerState, CreatedTime, StartedTime, FinishedTime
| render table

Événements Kubernetes

Remarque

Par défaut, les types d'événements normaux ne sont pas collectés, vous ne les verrez donc pas lorsque vous interrogez la table KubeEvents, à moins que le paramètre collect_all_kube_events ne soit activé. Si vous avez besoin de collecter les événements normaux, activez le paramètre collect_all_kube_events dans la ConfigMap container-azm-ms-agentconfig. Pour plus d’informations sur la configuration de la ConfigMap, consultez Configurer la collecte de données d’agent pour Container Insights.

KubeEvents
| where not(isempty(Namespace))
| sort by TimeGenerated desc
| render table

Processeur du conteneur

Perf
| where ObjectName == "K8SContainer" and CounterName == "cpuUsageNanoCores" 
| summarize AvgCPUUsageNanoCores = avg(CounterValue) by bin(TimeGenerated, 30m), InstanceName 

Mémoire du conteneur

Cette requête utilise memoryRssBytes qui est disponible uniquement pour les nœuds Linux.

Perf
| where ObjectName == "K8SContainer" and CounterName == "memoryRssBytes"
| summarize AvgUsedRssMemoryBytes = avg(CounterValue) by bin(TimeGenerated, 30m), InstanceName

Demandes par minute avec des métriques personnalisées

InsightsMetrics
| where Name == "requests_count"
| summarize Val=any(Val) by TimeGenerated=bin(TimeGenerated, 1m)
| sort by TimeGenerated asc
| project RequestsPerMinute = Val - prev(Val), TimeGenerated
| render barchart 

Pods par nom et espace de noms

let startTimestamp = ago(1h);
KubePodInventory
| where TimeGenerated > startTimestamp
| project ContainerID, PodName=Name, Namespace
| where PodName contains "name" and Namespace startswith "namespace"
| distinct ContainerID, PodName
| join
(
    ContainerLog
    | where TimeGenerated > startTimestamp
)
on ContainerID
// at this point before the next pipe, columns from both tables are available to be "projected". Due to both
// tables having a "Name" column, we assign an alias as PodName to one column which we actually want
| project TimeGenerated, PodName, LogEntry, LogEntrySource
| summarize by TimeGenerated, LogEntry
| order by TimeGenerated desc

Scale-out des pods (HPA)

Cette requête renvoie le nombre de répliques mises à l'échelle dans chaque déploiement. Calcule le pourcentage de scale-out avec le nombre maximal de réplicas configurés dans HPA.

let _minthreshold = 70; // minimum threshold goes here if you want to setup as an alert
let _maxthreshold = 90; // maximum threshold goes here if you want to setup as an alert
let startDateTime = ago(60m);
KubePodInventory
| where TimeGenerated >= startDateTime 
| where Namespace !in('default', 'kube-system') // List of non system namespace filter goes here.
| extend labels = todynamic(PodLabel)
| extend deployment_hpa = reverse(substring(reverse(ControllerName), indexof(reverse(ControllerName), "-") + 1))
| distinct tostring(deployment_hpa)
| join kind=inner (InsightsMetrics 
    | where TimeGenerated > startDateTime 
    | where Name == 'kube_hpa_status_current_replicas'
    | extend pTags = todynamic(Tags) //parse the tags for values
    | extend ns = todynamic(pTags.k8sNamespace) //parse namespace value from tags
    | extend deployment_hpa = todynamic(pTags.targetName) //parse HPA target name from tags
    | extend max_reps = todynamic(pTags.spec_max_replicas) // Parse maximum replica settings from HPA deployment
    | extend desired_reps = todynamic(pTags.status_desired_replicas) // Parse desired replica settings from HPA deployment
    | summarize arg_max(TimeGenerated, *) by tostring(ns), tostring(deployment_hpa), Cluster=toupper(tostring(split(_ResourceId, '/')[8])), toint(desired_reps), toint(max_reps), scale_out_percentage=(desired_reps * 100 / max_reps)
    //| where scale_out_percentage > _minthreshold and scale_out_percentage <= _maxthreshold
    )
    on deployment_hpa

Scale-out de pool de nœud

Cette requête retourne le nombre de nœuds actifs dans chaque pool de nœuds. Calcule le nombre de nœuds actifs disponibles et la configuration de nœuds max dans les paramètres de mise à l’échelle automatique pour déterminer le pourcentage de scale-out. Consultez les lignes commentées de la requête pour l’utiliser pour une règle d’alerte de nombre de résultats.

let nodepoolMaxnodeCount = 10; // the maximum number of nodes in your auto scale setting goes here.
let _minthreshold = 20;
let _maxthreshold = 90;
let startDateTime = 60m;
KubeNodeInventory
| where TimeGenerated >= ago(startDateTime)
| extend nodepoolType = todynamic(Labels) //Parse the labels to get the list of node pool types
| extend nodepoolName = todynamic(nodepoolType[0].agentpool) // parse the label to get the nodepool name or set the specific nodepool name (like nodepoolName = 'agentpool)'
| summarize nodeCount = count(Computer) by ClusterName, tostring(nodepoolName), TimeGenerated
//(Uncomment the below two lines to set this as a log search alert)
//| extend scaledpercent = iff(((nodeCount * 100 / nodepoolMaxnodeCount) >= _minthreshold and (nodeCount * 100 / nodepoolMaxnodeCount) < _maxthreshold), "warn", "normal")
//| where scaledpercent == 'warn'
| summarize arg_max(TimeGenerated, *) by nodeCount, ClusterName, tostring(nodepoolName)
| project ClusterName, 
    TotalNodeCount= strcat("Total Node Count: ", nodeCount),
    ScaledOutPercentage = (nodeCount * 100 / nodepoolMaxnodeCount),  
    TimeGenerated, 
    nodepoolName

Disponibilité des conteneurs système (replicatset)

Cette requête retourne les conteneurs système (replicasets) et signale le pourcentage d’indisponibilité. Consultez les lignes commentées de la requête pour l’utiliser pour une règle d’alerte de nombre de résultats.

let startDateTime = 5m; // the minimum time interval goes here
let _minalertThreshold = 50; //Threshold for minimum and maximum unavailable or not running containers
let _maxalertThreshold = 70;
KubePodInventory
| where TimeGenerated >= ago(startDateTime)
| distinct ClusterName, TimeGenerated
| summarize Clustersnapshot = count() by ClusterName
| join kind=inner (
    KubePodInventory
    | where TimeGenerated >= ago(startDateTime)
    | where Namespace in('default', 'kube-system') and ControllerKind == 'ReplicaSet' // the system namespace filter goes here
    | distinct ClusterName, Computer, PodUid, TimeGenerated, PodStatus, ServiceName, PodLabel, Namespace, ContainerStatus
    | summarize arg_max(TimeGenerated, *), TotalPODCount = count(), podCount = sumif(1, PodStatus == 'Running' or PodStatus != 'Running'), containerNotrunning = sumif(1, ContainerStatus != 'running')
        by ClusterName, TimeGenerated, ServiceName, PodLabel, Namespace
    )
    on ClusterName
| project ClusterName, ServiceName, podCount, containerNotrunning, containerNotrunningPercent = (containerNotrunning * 100 / podCount), TimeGenerated, PodStatus, PodLabel, Namespace, Environment = tostring(split(ClusterName, '-')[3]), Location = tostring(split(ClusterName, '-')[4]), ContainerStatus
//Uncomment the below line to set for automated alert
//| where PodStatus == "Running" and containerNotrunningPercent > _minalertThreshold and containerNotrunningPercent < _maxalertThreshold
| summarize arg_max(TimeGenerated, *), c_entry=count() by PodLabel, ServiceName, ClusterName
//Below lines are to parse the labels to identify the impacted service/component name
| extend parseLabel = replace(@'k8s-app', @'k8sapp', PodLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/component', @'appkubernetesiocomponent', parseLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/instance', @'appkubernetesioinstance', parseLabel)
| extend tags = todynamic(parseLabel)
| extend tag01 = todynamic(tags[0].app)
| extend tag02 = todynamic(tags[0].k8sapp)
| extend tag03 = todynamic(tags[0].appkubernetesiocomponent)
| extend tag04 = todynamic(tags[0].aadpodidbinding)
| extend tag05 = todynamic(tags[0].appkubernetesioinstance)
| extend tag06 = todynamic(tags[0].component)
| project ClusterName, TimeGenerated,
    ServiceName = strcat( ServiceName, tag01, tag02, tag03, tag04, tag05, tag06),
    ContainerUnavailable = strcat("Unavailable Percentage: ", containerNotrunningPercent),
    PodStatus = strcat("PodStatus: ", PodStatus), 
    ContainerStatus = strcat("Container Status: ", ContainerStatus)

Disponibilité des conteneurs système (daemonsets)

Cette requête retourne les conteneurs système (daemonsets) et signale le pourcentage d’indisponibilité. Consultez les lignes commentées de la requête pour l’utiliser pour une règle d’alerte de nombre de résultats.

let startDateTime = 5m; // the minimum time interval goes here
let _minalertThreshold = 50; //Threshold for minimum and maximum unavailable or not running containers
let _maxalertThreshold = 70;
KubePodInventory
| where TimeGenerated >= ago(startDateTime)
| distinct ClusterName, TimeGenerated
| summarize Clustersnapshot = count() by ClusterName
| join kind=inner (
    KubePodInventory
    | where TimeGenerated >= ago(startDateTime)
    | where Namespace in('default', 'kube-system') and ControllerKind == 'DaemonSet' // the system namespace filter goes here
    | distinct ClusterName, Computer, PodUid, TimeGenerated, PodStatus, ServiceName, PodLabel, Namespace, ContainerStatus
    | summarize arg_max(TimeGenerated, *), TotalPODCount = count(), podCount = sumif(1, PodStatus == 'Running' or PodStatus != 'Running'), containerNotrunning = sumif(1, ContainerStatus != 'running')
        by ClusterName, TimeGenerated, ServiceName, PodLabel, Namespace
    )
    on ClusterName
| project ClusterName, ServiceName, podCount, containerNotrunning, containerNotrunningPercent = (containerNotrunning * 100 / podCount), TimeGenerated, PodStatus, PodLabel, Namespace, Environment = tostring(split(ClusterName, '-')[3]), Location = tostring(split(ClusterName, '-')[4]), ContainerStatus
//Uncomment the below line to set for automated alert
//| where PodStatus == "Running" and containerNotrunningPercent > _minalertThreshold and containerNotrunningPercent < _maxalertThreshold
| summarize arg_max(TimeGenerated, *), c_entry=count() by PodLabel, ServiceName, ClusterName
//Below lines are to parse the labels to identify the impacted service/component name
| extend parseLabel = replace(@'k8s-app', @'k8sapp', PodLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/component', @'appkubernetesiocomponent', parseLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/instance', @'appkubernetesioinstance', parseLabel)
| extend tags = todynamic(parseLabel)
| extend tag01 = todynamic(tags[0].app)
| extend tag02 = todynamic(tags[0].k8sapp)
| extend tag03 = todynamic(tags[0].appkubernetesiocomponent)
| extend tag04 = todynamic(tags[0].aadpodidbinding)
| extend tag05 = todynamic(tags[0].appkubernetesioinstance)
| extend tag06 = todynamic(tags[0].component)
| project ClusterName, TimeGenerated,
    ServiceName = strcat( ServiceName, tag01, tag02, tag03, tag04, tag05, tag06),
    ContainerUnavailable = strcat("Unavailable Percentage: ", containerNotrunningPercent),
    PodStatus = strcat("PodStatus: ", PodStatus), 
    ContainerStatus = strcat("Container Status: ", ContainerStatus)

Journaux de conteneur

Les journaux de conteneur pour AKS sont stockés dans la table ContainerLogV2. Vous pouvez exécuter les exemples de requêtes suivants pour rechercher la sortie du journal stderr/stdout à partir de pods, de déploiements ou d’espaces de noms cibles.

Journaux de conteneur pour un pod, un espace de noms et un conteneur spécifiques

ContainerLogV2
| where _ResourceId =~ "clusterResourceID" //update with resource ID
| where PodNamespace == "podNameSpace" //update with target namespace
| where PodName == "podName" //update with target pod
| where ContainerName == "containerName" //update with target container
| project TimeGenerated, Computer, ContainerId, LogMessage, LogSource

Journaux de conteneur pour un déploiement spécifique

let KubePodInv = KubePodInventory
| where _ResourceId =~ "clusterResourceID" //update with resource ID
| where Namespace == "deploymentNamespace" //update with target namespace
| where ControllerKind == "ReplicaSet"
| extend deployment = reverse(substring(reverse(ControllerName), indexof(reverse(ControllerName), "-") + 1))
| where deployment == "deploymentName" //update with target deployment
| extend ContainerId = ContainerID
| summarize arg_max(TimeGenerated, *)  by deployment, ContainerId, PodStatus, ContainerStatus
| project deployment, ContainerId, PodStatus, ContainerStatus;

KubePodInv
| join
(
    ContainerLogV2
  | where TimeGenerated >= startTime and TimeGenerated < endTime
  | where PodNamespace == "deploymentNamespace" //update with target namespace
  | where PodName startswith "deploymentName" //update with target deployment
) on ContainerId
| project TimeGenerated, deployment, PodName, PodStatus, ContainerName, ContainerId, ContainerStatus, LogMessage, LogSource

Journaux de conteneur pour tout pod ayant échoué dans un espace de noms spécifique

    let KubePodInv = KubePodInventory
    | where TimeGenerated >= startTime and TimeGenerated < endTime
    | where _ResourceId =~ "clustereResourceID" //update with resource ID
    | where Namespace == "podNamespace" //update with target namespace
    | where PodStatus == "Failed"
    | extend ContainerId = ContainerID
    | summarize arg_max(TimeGenerated, *)  by  ContainerId, PodStatus, ContainerStatus
    | project ContainerId, PodStatus, ContainerStatus;

    KubePodInv
    | join
    (
        ContainerLogV2
    | where TimeGenerated >= startTime and TimeGenerated < endTime
    | where PodNamespace == "podNamespace" //update with target namespace
    ) on ContainerId
    | project TimeGenerated, PodName, PodStatus, ContainerName, ContainerId, ContainerStatus, LogMessage, LogSource

Requêtes de visualisation par défaut Container Insights

Ces requêtes sont générées à partir des visualisations prêtes à l’emploi depuis les insights de conteneur. Vous pouvez choisir de les utiliser si vous avez activé les paramètres d’optimisation des coûts personnalisés, au lieu des graphiques par défaut.

Nombre de nœuds par état

Les tables requises pour ce graphique incluent KubeNodeInventory.

 let trendBinSize = 5m;
 let maxListSize = 1000;
 let clusterId = 'clusterResourceID'; //update with resource ID
 
 let rawData = KubeNodeInventory 
| where ClusterId =~ clusterId 
| distinct ClusterId, TimeGenerated 
| summarize ClusterSnapshotCount = count() by Timestamp = bin(TimeGenerated, trendBinSize), ClusterId 
| join hint.strategy=broadcast ( KubeNodeInventory 
| where ClusterId =~ clusterId 
| summarize TotalCount = count(), ReadyCount = sumif(1, Status contains ('Ready')) by ClusterId, Timestamp = bin(TimeGenerated, trendBinSize) 
| extend NotReadyCount = TotalCount - ReadyCount ) on ClusterId, Timestamp 
| project ClusterId, Timestamp, TotalCount = todouble(TotalCount) / ClusterSnapshotCount, ReadyCount = todouble(ReadyCount) / ClusterSnapshotCount, NotReadyCount = todouble(NotReadyCount) / ClusterSnapshotCount;

 rawData 
| order by Timestamp asc 
| summarize makelist(Timestamp, maxListSize), makelist(TotalCount, maxListSize), makelist(ReadyCount, maxListSize), makelist(NotReadyCount, maxListSize) by ClusterId 
| join ( rawData 
| summarize Avg_TotalCount = avg(TotalCount), Avg_ReadyCount = avg(ReadyCount), Avg_NotReadyCount = avg(NotReadyCount) by ClusterId ) on ClusterId 
| project ClusterId, Avg_TotalCount, Avg_ReadyCount, Avg_NotReadyCount, list_Timestamp, list_TotalCount, list_ReadyCount, list_NotReadyCount 

Nombre de pods par état

Les tables requises pour ce graphique incluent KubePodInventory.

 let trendBinSize = 5m;
 let maxListSize = 1000;
 let clusterId = 'clusterResourceID'; //update with resource ID
 
 let rawData = KubePodInventory 
| where ClusterId =~ clusterId 
| distinct ClusterId, TimeGenerated 
| summarize ClusterSnapshotCount = count() by bin(TimeGenerated, trendBinSize), ClusterId 
| join hint.strategy=broadcast ( KubePodInventory 
| where ClusterId =~ clusterId 
| summarize PodStatus=any(PodStatus) by TimeGenerated, PodUid, ClusterId 
| summarize TotalCount = count(), PendingCount = sumif(1, PodStatus =~ 'Pending'), RunningCount = sumif(1, PodStatus =~ 'Running'), SucceededCount = sumif(1, PodStatus =~ 'Succeeded'), FailedCount = sumif(1, PodStatus =~ 'Failed'), TerminatingCount = sumif(1, PodStatus =~ 'Terminating') by ClusterId, bin(TimeGenerated, trendBinSize) ) on ClusterId, TimeGenerated 
| extend UnknownCount = TotalCount - PendingCount - RunningCount - SucceededCount - FailedCount - TerminatingCount 
| project ClusterId, Timestamp = TimeGenerated, TotalCount = todouble(TotalCount) / ClusterSnapshotCount, PendingCount = todouble(PendingCount) / ClusterSnapshotCount, RunningCount = todouble(RunningCount) / ClusterSnapshotCount, SucceededCount = todouble(SucceededCount) / ClusterSnapshotCount, FailedCount = todouble(FailedCount) / ClusterSnapshotCount, TerminatingCount = todouble(TerminatingCount) / ClusterSnapshotCount, UnknownCount = todouble(UnknownCount) / ClusterSnapshotCount;

 let rawDataCached = rawData;
 
 rawDataCached 
| order by Timestamp asc 
| summarize makelist(Timestamp, maxListSize), makelist(TotalCount, maxListSize), makelist(PendingCount, maxListSize), makelist(RunningCount, maxListSize), makelist(SucceededCount, maxListSize), makelist(FailedCount, maxListSize), makelist(TerminatingCount, maxListSize), makelist(UnknownCount, maxListSize) by ClusterId 
| join ( rawDataCached 
| summarize Avg_TotalCount = avg(TotalCount), Avg_PendingCount = avg(PendingCount), Avg_RunningCount = avg(RunningCount), Avg_SucceededCount = avg(SucceededCount), Avg_FailedCount = avg(FailedCount), Avg_TerminatingCount = avg(TerminatingCount), Avg_UnknownCount = avg(UnknownCount) by ClusterId ) on ClusterId 
| project ClusterId, Avg_TotalCount, Avg_PendingCount, Avg_RunningCount, Avg_SucceededCount, Avg_FailedCount, Avg_TerminatingCount, Avg_UnknownCount, list_Timestamp, list_TotalCount, list_PendingCount, list_RunningCount, list_SucceededCount, list_FailedCount, list_TerminatingCount, list_UnknownCount 

Liste des conteneurs par état

Les tables requises pour ce graphique incluent KubePodInventory et Perf.

 let startDateTime = datetime('start time');
 let endDateTime = datetime('end time');
 let trendBinSize = 15m;
 let maxResultCount = 10000;
 let metricUsageCounterName = 'cpuUsageNanoCores';
 let metricLimitCounterName = 'cpuLimitNanoCores';
 
 let KubePodInventoryTable = KubePodInventory 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| where isnotempty(Computer) 
| project TimeGenerated, ClusterId, ClusterName, Namespace, ServiceName, ControllerName, Node = Computer, Pod = Name, ContainerInstance = ContainerName, ContainerID, ReadySinceNow = format_timespan(endDateTime - ContainerCreationTimeStamp , 'ddd.hh:mm:ss.fff'), Restarts = ContainerRestartCount, Status = ContainerStatus, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind = ControllerKind, PodStatus;

 let startRestart = KubePodInventoryTable 
| summarize arg_min(TimeGenerated, *) by Node, ContainerInstance 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project Node, ContainerInstance, InstanceName = strcat(ClusterId, '/', ContainerInstance), StartRestart = Restarts;

 let IdentityTable = KubePodInventoryTable 
| summarize arg_max(TimeGenerated, *) by Node, ContainerInstance 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project ClusterName, Namespace, ServiceName, ControllerName, Node, Pod, ContainerInstance, InstanceName = strcat(ClusterId, '/', ContainerInstance), ContainerID, ReadySinceNow, Restarts, Status = iff(Status =~ 'running', 0, iff(Status=~'waiting', 1, iff(Status =~'terminated', 2, 3))), ContainerStatusReason, ControllerKind, Containers = 1, ContainerName = tostring(split(ContainerInstance, '/')[1]), PodStatus, LastPodInventoryTimeGenerated = TimeGenerated, ClusterId;

 let CachedIdentityTable = IdentityTable;
 
 let FilteredPerfTable = Perf 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where ObjectName == 'K8SContainer' 
| where InstanceName startswith 'clusterResourceID' 
| project Node = Computer, TimeGenerated, CounterName, CounterValue, InstanceName ;

 let CachedFilteredPerfTable = FilteredPerfTable;
 
 let LimitsTable = CachedFilteredPerfTable 
| where CounterName =~ metricLimitCounterName 
| summarize arg_max(TimeGenerated, *) by Node, InstanceName 
| project Node, InstanceName, LimitsValue = iff(CounterName =~ 'cpuLimitNanoCores', CounterValue/1000000, CounterValue), TimeGenerated;
 let MetaDataTable = CachedIdentityTable 
| join kind=leftouter ( LimitsTable ) on Node, InstanceName 
| join kind= leftouter ( startRestart ) on Node, InstanceName 
| project ClusterName, Namespace, ServiceName, ControllerName, Node, Pod, InstanceName, ContainerID, ReadySinceNow, Restarts, LimitsValue, Status, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind, Containers, ContainerName, ContainerInstance, StartRestart, PodStatus, LastPodInventoryTimeGenerated, ClusterId;

 let UsagePerfTable = CachedFilteredPerfTable 
| where CounterName =~ metricUsageCounterName 
| project TimeGenerated, Node, InstanceName, CounterValue = iff(CounterName =~ 'cpuUsageNanoCores', CounterValue/1000000, CounterValue);

 let LastRestartPerfTable = CachedFilteredPerfTable 
| where CounterName =~ 'restartTimeEpoch' 
| summarize arg_max(TimeGenerated, *) by Node, InstanceName 
| project Node, InstanceName, UpTime = CounterValue, LastReported = TimeGenerated;

 let AggregationTable = UsagePerfTable 
| summarize Aggregation = max(CounterValue) by Node, InstanceName 
| project Node, InstanceName, Aggregation;

 let TrendTable = UsagePerfTable 
| summarize TrendAggregation = max(CounterValue) by bin(TimeGenerated, trendBinSize), Node, InstanceName 
| project TrendTimeGenerated = TimeGenerated, Node, InstanceName , TrendAggregation 
| summarize TrendList = makelist(pack("timestamp", TrendTimeGenerated, "value", TrendAggregation)) by Node, InstanceName;

 let containerFinalTable = MetaDataTable 
| join kind= leftouter( AggregationTable ) on Node, InstanceName 
| join kind = leftouter (LastRestartPerfTable) on Node, InstanceName 
| order by Aggregation desc, ContainerName 
| join kind = leftouter ( TrendTable) on Node, InstanceName 
| extend ContainerIdentity = strcat(ContainerName, ' ', Pod) 
| project ContainerIdentity, Status, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), Aggregation, Node, Restarts, ReadySinceNow, TrendList = iif(isempty(TrendList), parse_json('[]'), TrendList), LimitsValue, ControllerName, ControllerKind, ContainerID, Containers, UpTimeNow = datetime_diff('Millisecond', endDateTime, datetime_add('second', toint(UpTime), make_datetime(1970,1,1))), ContainerInstance, StartRestart, LastReportedDelta = datetime_diff('Millisecond', endDateTime, LastReported), PodStatus, InstanceName, Namespace, LastPodInventoryTimeGenerated, ClusterId;
containerFinalTable 
| limit 200

Liste des contrôleurs par état

Les tables requises pour ce graphique incluent KubePodInventory et Perf.

 let endDateTime = datetime('start time');
 let startDateTime = datetime('end time');
 let trendBinSize = 15m;
 let metricLimitCounterName = 'cpuLimitNanoCores';
 let metricUsageCounterName = 'cpuUsageNanoCores';
 
 let primaryInventory = KubePodInventory 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| extend Node = Computer 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project TimeGenerated, ClusterId, ClusterName, Namespace, ServiceName, Node = Computer, ControllerName, Pod = Name, ContainerInstance = ContainerName, ContainerID, InstanceName, PerfJoinKey = strcat(ClusterId, '/', ContainerName), ReadySinceNow = format_timespan(endDateTime - ContainerCreationTimeStamp, 'ddd.hh:mm:ss.fff'), Restarts = ContainerRestartCount, Status = ContainerStatus, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind = ControllerKind, PodStatus, ControllerId = strcat(ClusterId, '/', Namespace, '/', ControllerName);

let podStatusRollup = primaryInventory 
| summarize arg_max(TimeGenerated, *) by Pod 
| project ControllerId, PodStatus, TimeGenerated 
| summarize count() by ControllerId, PodStatus = iif(TimeGenerated < ago(30m), 'Unknown', PodStatus) 
| summarize PodStatusList = makelist(pack('Status', PodStatus, 'Count', count_)) by ControllerId;

let latestContainersByController = primaryInventory 
| where isnotempty(Node) 
| summarize arg_max(TimeGenerated, *) by PerfJoinKey 
| project ControllerId, PerfJoinKey;

let filteredPerformance = Perf 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where ObjectName == 'K8SContainer' 
| where InstanceName startswith 'clusterResourceID' //update with resource ID
| project TimeGenerated, CounterName, CounterValue, InstanceName, Node = Computer ;

let metricByController = filteredPerformance 
| where CounterName =~ metricUsageCounterName 
| extend PerfJoinKey = InstanceName 
| summarize Value = percentile(CounterValue, 95) by PerfJoinKey, CounterName 
| join (latestContainersByController) on PerfJoinKey 
| summarize Value = sum(Value) by ControllerId, CounterName 
| project ControllerId, CounterName, AggregationValue = iff(CounterName =~ 'cpuUsageNanoCores', Value/1000000, Value);

let containerCountByController = latestContainersByController 
| summarize ContainerCount = count() by ControllerId;

let restartCountsByController = primaryInventory 
| summarize Restarts = max(Restarts) by ControllerId;

let oldestRestart = primaryInventory 
| summarize ReadySinceNow = min(ReadySinceNow) by ControllerId;

let trendLineByController = filteredPerformance 
| where CounterName =~ metricUsageCounterName 
| extend PerfJoinKey = InstanceName 
| summarize Value = percentile(CounterValue, 95) by bin(TimeGenerated, trendBinSize), PerfJoinKey, CounterName 
| order by TimeGenerated asc 
| join kind=leftouter (latestContainersByController) on PerfJoinKey 
| summarize Value=sum(Value) by ControllerId, TimeGenerated, CounterName 
| project TimeGenerated, Value = iff(CounterName =~ 'cpuUsageNanoCores', Value/1000000, Value), ControllerId 
| summarize TrendList = makelist(pack("timestamp", TimeGenerated, "value", Value)) by ControllerId;

let latestLimit = filteredPerformance 
| where CounterName =~ metricLimitCounterName 
| extend PerfJoinKey = InstanceName 
| summarize arg_max(TimeGenerated, *) by PerfJoinKey 
| join kind=leftouter (latestContainersByController) on PerfJoinKey 
| summarize Value = sum(CounterValue) by ControllerId, CounterName 
| project ControllerId, LimitValue = iff(CounterName =~ 'cpuLimitNanoCores', Value/1000000, Value);

let latestTimeGeneratedByController = primaryInventory 
| summarize arg_max(TimeGenerated, *) by ControllerId 
| project ControllerId, LastTimeGenerated = TimeGenerated;

primaryInventory 
| distinct ControllerId, ControllerName, ControllerKind, Namespace 
| join kind=leftouter (podStatusRollup) on ControllerId 
| join kind=leftouter (metricByController) on ControllerId 
| join kind=leftouter (containerCountByController) on ControllerId 
| join kind=leftouter (restartCountsByController) on ControllerId 
| join kind=leftouter (oldestRestart) on ControllerId 
| join kind=leftouter (trendLineByController) on ControllerId 
| join kind=leftouter (latestLimit) on ControllerId 
| join kind=leftouter (latestTimeGeneratedByController) on ControllerId 
| project ControllerId, ControllerName, ControllerKind, PodStatusList, AggregationValue, ContainerCount = iif(isempty(ContainerCount), 0, ContainerCount), Restarts, ReadySinceNow, Node = '-', TrendList, LimitValue, LastTimeGenerated, Namespace 
| limit 250;

Liste de nœuds par état

Les tables requises pour ce graphique incluent KubeNodeInventory, KubePodInventory, et Perf.

 let endDateTime = datetime('start time');
 let startDateTime = datetime('end time');
 let binSize = 15m;
 let limitMetricName = 'cpuCapacityNanoCores';
 let usedMetricName = 'cpuUsageNanoCores'; 
 
 let materializedNodeInventory = KubeNodeInventory 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| project ClusterName, ClusterId, Node = Computer, TimeGenerated, Status, NodeName = Computer, NodeId = strcat(ClusterId, '/', Computer), Labels 
| where ClusterId =~ 'clusterResourceID'; //update with resource ID

 let materializedPerf = Perf 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| where ObjectName == 'K8SNode' 
| extend NodeId = InstanceName;

 let materializedPodInventory = KubePodInventory 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| where ClusterId =~ 'clusterResourceID'; //update with resource ID

 let inventoryOfCluster = materializedNodeInventory 
| summarize arg_max(TimeGenerated, Status) by ClusterName, ClusterId, NodeName, NodeId;

 let labelsByNode = materializedNodeInventory 
| summarize arg_max(TimeGenerated, Labels) by ClusterName, ClusterId, NodeName, NodeId;

 let countainerCountByNode = materializedPodInventory 
| project ContainerName, NodeId = strcat(ClusterId, '/', Computer) 
| distinct NodeId, ContainerName 
| summarize ContainerCount = count() by NodeId;

 let latestUptime = materializedPerf 
| where CounterName == 'restartTimeEpoch' 
| summarize arg_max(TimeGenerated, CounterValue) by NodeId 
| extend UpTimeMs = datetime_diff('Millisecond', endDateTime, datetime_add('second', toint(CounterValue), make_datetime(1970,1,1))) 
| project NodeId, UpTimeMs;

 let latestLimitOfNodes = materializedPerf 
| where CounterName == limitMetricName 
| summarize CounterValue = max(CounterValue) by NodeId 
| project NodeId, LimitValue = CounterValue;

 let actualUsageAggregated = materializedPerf 
| where CounterName == usedMetricName 
| summarize Aggregation = percentile(CounterValue, 95) by NodeId //This line updates to the desired aggregation
| project NodeId, Aggregation;

 let aggregateTrendsOverTime = materializedPerf 
| where CounterName == usedMetricName 
| summarize TrendAggregation = percentile(CounterValue, 95) by NodeId, bin(TimeGenerated, binSize) //This line updates to the desired aggregation
| project NodeId, TrendAggregation, TrendDateTime = TimeGenerated;

 let unscheduledPods = materializedPodInventory 
| where isempty(Computer) 
| extend Node = Computer 
| where isempty(ContainerStatus) 
| where PodStatus == 'Pending' 
| order by TimeGenerated desc 
| take 1 
| project ClusterName, NodeName = 'unscheduled', LastReceivedDateTime = TimeGenerated, Status = 'unscheduled', ContainerCount = 0, UpTimeMs = '0', Aggregation = '0', LimitValue = '0', ClusterId;

 let scheduledPods = inventoryOfCluster 
| join kind=leftouter (aggregateTrendsOverTime) on NodeId 
| extend TrendPoint = pack("TrendTime", TrendDateTime, "TrendAggregation", TrendAggregation) 
| summarize make_list(TrendPoint) by NodeId, NodeName, Status 
| join kind=leftouter (labelsByNode) on NodeId 
| join kind=leftouter (countainerCountByNode) on NodeId 
| join kind=leftouter (latestUptime) on NodeId 
| join kind=leftouter (latestLimitOfNodes) on NodeId 
| join kind=leftouter (actualUsageAggregated) on NodeId 
| project ClusterName, NodeName, ClusterId, list_TrendPoint, LastReceivedDateTime = TimeGenerated, Status, ContainerCount, UpTimeMs, Aggregation, LimitValue, Labels 
| limit 250;

 union (scheduledPods), (unscheduledPods) 
| project ClusterName, NodeName, LastReceivedDateTime, Status, ContainerCount, UpTimeMs = UpTimeMs_long, Aggregation = Aggregation_real, LimitValue = LimitValue_real, list_TrendPoint, Labels, ClusterId 

Métriques Prometheus

Les exemples suivants nécessitent la configuration décrite dans Envoyer des métriques Prometheus à l’espace de travail Log Analytics avec Container Insights.

Pour voir les métriques Prometheus scrapées par Azure Monitor et filtrées par espace de noms, spécifiez « prometheus ». Voici un exemple de requête permettant de voir les métriques Prometheus à partir de l’espace de noms kubernetes default.

InsightsMetrics 
| where Namespace contains "prometheus"
| extend tags=parse_json(Tags)
| summarize count() by Name

Les données Prometheus peuvent également être interrogées directement par nom.

InsightsMetrics 
| where Namespace contains "prometheus"
| where Name contains "some_prometheus_metric"

Pour identifier le volume d’ingestion de chaque taille de mesure en Go par jour pour déterminer si elle est élevée, la requête suivante est fournie.

InsightsMetrics
| where Namespace contains "prometheus"
| where TimeGenerated > ago(24h)
| summarize VolumeInGB = (sum(_BilledSize) / (1024 * 1024 * 1024)) by Name
| order by VolumeInGB desc
| render barchart

La sortie indiquera des résultats similaires à ce qui suit :

Capture d’écran affichant les résultats de la requête de journal du volume d’ingestion de données

Pour estimer la taille de chaque mesure en Go pendant un mois pour déterminer si le volume de données reçues dans l’espace de travail est élevé, la requête suivante est fournie.

InsightsMetrics
| where Namespace contains "prometheus"
| where TimeGenerated > ago(24h)
| summarize EstimatedGBPer30dayMonth = (sum(_BilledSize) / (1024 * 1024 * 1024)) * 30 by Name
| order by EstimatedGBPer30dayMonth desc
| render barchart

La sortie indiquera des résultats similaires à ce qui suit :

Capture d’écran affichant les résultats de la requête de journal du volume d’ingestion de données

Erreurs de configuration ou de scraping

Pour examiner les erreurs de récupération ou de configuration, l’exemple de requête suivant retourne des événements d’information à partir de la table KubeMonAgentEvents.

KubeMonAgentEvents | where Level != "Info" 

Les résultats obtenus sont similaires à ceux de l’exemple suivant :

Capture d'écran qui montre les résultats de la requête de journal des événements informationnels d'un agent.

Forum aux questions

Cette section fournit des réponses aux questions fréquentes.

Puis-je consulter les métriques collectées dans Grafana ?

Container Insights prend en charge l’affichage des métriques stockées dans votre espace de travail Log Analytics, dans les tableaux de bord Grafana. Nous avons fourni un modèle que vous pouvez télécharger à partir du référentiel des tableaux de bord Grafana. Vous pouvez l’utiliser pour démarrer ou comme référence pour découvrir comment interroger les données de vos clusters surveillés afin de les visualiser dans des tableaux de bord Grafana personnalisés.

Pourquoi les lignes de journal d’une taille supérieure à 16 Ko sont-elles divisées en plusieurs enregistrements dans Log Analytics ?

L’agent utilise le pilote de journalisation de fichier JSON de Docker pour capturer les conteneurs stdout et stderr. Ce pilote de journalisation divise les lignes de journal d’une taille supérieure à 16 Ko en plusieurs lignes lorsqu’elles sont copiées à partir des conteneurs stdout ou stderr vers un fichier. Utilisez la journalisation multiligne pour obtenir une taille d’enregistrement de journal jusqu’à 64 Ko.

Étapes suivantes

Container Insights n’inclut pas d’ensemble prédéfini d’alertes. Pour savoir comment créer des alertes recommandées en cas d'utilisation élevée du processeur et de la mémoire afin de prendre en charge vos processus et procédures DevOps ou opérationnels, voir Créer des alertes de performance avec Container insights.