Cet article décrit les propriétés et le schéma des événements de l’espace de travail Machine Learning. Pour une présentation des schémas d’événements, consultez Schéma d’événements Azure Event Grid.
Quand un événement est déclenché, le service Event Grid envoie les données relatives à cet événement au point de terminaison d’abonnement. Cette section contient un exemple de ce à quoi ces données ressembleraient pour chaque événement.
Événement Microsoft.MachineLearningServices.ModelRegistered
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "models/sklearn_regression_model:20",
"type": "Microsoft.MachineLearningServices.ModelRegistered",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"ModelName": "sklearn_regression_model",
"ModelVersion": 20,
"ModelTags": {
"area": "diabetes",
"type": "regression"
},
"ModelProperties": {
"type": "test"
}
},
"specversion": "1.0"
}]
Événement Microsoft.MachineLearningServices.ModelDeployed
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "endpoints/my-sklearn-service",
"type": "Microsoft.MachineLearningServices.ModelDeployed",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"ServiceName": "my-sklearn-service",
"ServiceComputeType": "ACI",
"ModelIds": "sklearn_regression_model:1,sklearn_regression_model:2",
"ServiceTags": {
"area": "diabetes",
"type": "regression"
},
"ServiceProperties": {
"type": "test"
}
},
"specversion": "1.0"
}]
Événement Microsoft.MachineLearningServices.RunCompleted
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "experiments/0fa9dfaa-cba3-4fa7-b590-23e48548f5c1/runs/AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"type": "Microsoft.MachineLearningServices.RunCompleted",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"experimentId": "0fa9dfaa-cba3-4fa7-b590-23e48548f5c1",
"experimentName": "automl-local-regression",
"runId": "AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"runType": null,
"runTags": {},
"runProperties": {
"runTemplate": "automl_child",
"pipeline_id": "5adc0a4fe02504a586f09a4fcbb241f9a4012062",
"pipeline_spec": "{\"objects\": [{\"class_name\": \"StandardScaler\", \"module\": \"sklearn.preprocessing\", \"param_args\": [], \"param_kwargs\": {\"with_mean\": true, \"with_std\": false}, \"prepared_kwargs\": {}, \"spec_class\": \"preproc\"}, {\"class_name\": \"LassoLars\", \"module\": \"sklearn.linear_model\", \"param_args\": [], \"param_kwargs\": {\"alpha\": 0.001, \"normalize\": true}, \"prepared_kwargs\": {}, \"spec_class\": \"sklearn\"}], \"pipeline_id\": \"5adc0a4fe02504a586f09a4fcbb241f9a4012062\"}",
"training_percent": "100",
"predicted_cost": "0.062226144097381045",
"iteration": "5",
"run_template": "automl_child",
"run_preprocessor": "StandardScalerWrapper",
"run_algorithm": "LassoLars",
"conda_env_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/conda_env_v_1_0_0.yml",
"model_name": "AutoMLad912b2d65",
"scoring_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/scoring_file_v_1_0_0.py",
"model_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/model.pkl"
}
},
"specversion": "1.0"
}]
Événement Microsoft.MachineLearningServices.DatasetDriftDetected
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "datadrifts/{}/runs/{}",
"type": "Microsoft.MachineLearningServices.DatasetDriftDetected",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"DataDriftId": "01d29aa4-e6a4-470a-9ef3-66660d21f8ef",
"DataDriftName": "myDriftMonitor",
"RunId": "01d29aa4-e6a4-470a-9ef3-66660d21f8ef_1571590300380",
"BaseDatasetId": "3c56d136-0f64-4657-a0e8-5162089a88a3",
"TargetDatasetId": "d7e74d2e-c972-4266-b5fb-6c9c182d2a74",
"DriftCoefficient": 0.83503490684792081,
"StartTime": "2019-07-04T00:00:00+00:00",
"EndTime": "2019-07-05T00:00:00+00:00"
},
"specversion": "1.0"
}]
Événement Microsoft.MachineLearningServices.RunStatusChanged
[{
"source": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "experiments/0fa9dfaa-cba3-4fa7-b590-23e48548f5c1/runs/AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"type": "Microsoft.MachineLearningServices.RunStatusChanged",
"time": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"experimentId": "0fa9dfaa-cba3-4fa7-b590-23e48548f5c1",
"experimentName": "automl-local-regression",
"runId": "AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"runType": null,
"runTags": {},
"runProperties": {
"runTemplate": "automl_child",
"pipeline_id": "5adc0a4fe02504a586f09a4fcbb241f9a4012062",
"pipeline_spec": "{\"objects\": [{\"class_name\": \"StandardScaler\", \"module\": \"sklearn.preprocessing\", \"param_args\": [], \"param_kwargs\": {\"with_mean\": true, \"with_std\": false}, \"prepared_kwargs\": {}, \"spec_class\": \"preproc\"}, {\"class_name\": \"LassoLars\", \"module\": \"sklearn.linear_model\", \"param_args\": [], \"param_kwargs\": {\"alpha\": 0.001, \"normalize\": true}, \"prepared_kwargs\": {}, \"spec_class\": \"sklearn\"}], \"pipeline_id\": \"5adc0a4fe02504a586f09a4fcbb241f9a4012062\"}",
"training_percent": "100",
"predicted_cost": "0.062226144097381045",
"iteration": "5",
"run_template": "automl_child",
"run_preprocessor": "StandardScalerWrapper",
"run_algorithm": "LassoLars",
"conda_env_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/conda_env_v_1_0_0.yml",
"model_name": "AutoMLad912b2d65",
"scoring_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/scoring_file_v_1_0_0.py",
"model_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/model.pkl"
},
"runStatus": "failed"
},
"specversion": "1.0"
}]
Événement Microsoft.MachineLearningServices.ModelRegistered
[{
"topic": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "models/sklearn_regression_model:20",
"eventType": "Microsoft.MachineLearningServices.ModelRegistered",
"eventTime": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"ModelName": "sklearn_regression_model",
"ModelVersion": 20,
"ModelTags": {
"area": "diabetes",
"type": "regression"
},
"ModelProperties": {
"type": "test"
}
},
"dataVersion": "",
"metadataVersion": "1"
}]
Événement Microsoft.MachineLearningServices.ModelDeployed
[{
"topic": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "endpoints/my-sklearn-service",
"eventType": "Microsoft.MachineLearningServices.ModelDeployed",
"eventTime": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"ServiceName": "my-sklearn-service",
"ServiceComputeType": "ACI",
"ModelIds": "sklearn_regression_model:1,sklearn_regression_model:2",
"ServiceTags": {
"area": "diabetes",
"type": "regression"
},
"ServiceProperties": {
"type": "test"
}
},
"dataVersion": "",
"metadataVersion": "1"
}]
Événement Microsoft.MachineLearningServices.RunCompleted
[{
"topic": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "experiments/0fa9dfaa-cba3-4fa7-b590-23e48548f5c1/runs/AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"eventType": "Microsoft.MachineLearningServices.RunCompleted",
"eventTime": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"experimentId": "0fa9dfaa-cba3-4fa7-b590-23e48548f5c1",
"experimentName": "automl-local-regression",
"runId": "AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"runType": null,
"runTags": {},
"runProperties": {
"runTemplate": "automl_child",
"pipeline_id": "5adc0a4fe02504a586f09a4fcbb241f9a4012062",
"pipeline_spec": "{\"objects\": [{\"class_name\": \"StandardScaler\", \"module\": \"sklearn.preprocessing\", \"param_args\": [], \"param_kwargs\": {\"with_mean\": true, \"with_std\": false}, \"prepared_kwargs\": {}, \"spec_class\": \"preproc\"}, {\"class_name\": \"LassoLars\", \"module\": \"sklearn.linear_model\", \"param_args\": [], \"param_kwargs\": {\"alpha\": 0.001, \"normalize\": true}, \"prepared_kwargs\": {}, \"spec_class\": \"sklearn\"}], \"pipeline_id\": \"5adc0a4fe02504a586f09a4fcbb241f9a4012062\"}",
"training_percent": "100",
"predicted_cost": "0.062226144097381045",
"iteration": "5",
"run_template": "automl_child",
"run_preprocessor": "StandardScalerWrapper",
"run_algorithm": "LassoLars",
"conda_env_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/conda_env_v_1_0_0.yml",
"model_name": "AutoMLad912b2d65",
"scoring_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/scoring_file_v_1_0_0.py",
"model_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/model.pkl"
}
},
"dataVersion": "",
"metadataVersion": "1"
}]
Événement Microsoft.MachineLearningServices.DatasetDriftDetected
[{
"topic": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "datadrifts/{}/runs/{}",
"eventType": "Microsoft.MachineLearningServices.DatasetDriftDetected",
"eventTime": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"DataDriftId": "01d29aa4-e6a4-470a-9ef3-66660d21f8ef",
"DataDriftName": "myDriftMonitor",
"RunId": "01d29aa4-e6a4-470a-9ef3-66660d21f8ef_1571590300380",
"BaseDatasetId": "3c56d136-0f64-4657-a0e8-5162089a88a3",
"TargetDatasetId": "d7e74d2e-c972-4266-b5fb-6c9c182d2a74",
"DriftCoefficient": 0.83503490684792081,
"StartTime": "2019-07-04T00:00:00+00:00",
"EndTime": "2019-07-05T00:00:00+00:00"
},
"dataVersion": "",
"metadataVersion": "1"
}]
Événement Microsoft.MachineLearningServices.RunStatusChanged
[{
"topic": "/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace-name}",
"subject": "experiments/0fa9dfaa-cba3-4fa7-b590-23e48548f5c1/runs/AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"eventType": "Microsoft.MachineLearningServices.RunStatusChanged",
"eventTime": "2017-06-26T18:41:00.9584103Z",
"id": "831e1650-001e-001b-66ab-eeb76e069631",
"data": {
"experimentId": "0fa9dfaa-cba3-4fa7-b590-23e48548f5c1",
"experimentName": "automl-local-regression",
"runId": "AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5",
"runType": null,
"runTags": {},
"runProperties": {
"runTemplate": "automl_child",
"pipeline_id": "5adc0a4fe02504a586f09a4fcbb241f9a4012062",
"pipeline_spec": "{\"objects\": [{\"class_name\": \"StandardScaler\", \"module\": \"sklearn.preprocessing\", \"param_args\": [], \"param_kwargs\": {\"with_mean\": true, \"with_std\": false}, \"prepared_kwargs\": {}, \"spec_class\": \"preproc\"}, {\"class_name\": \"LassoLars\", \"module\": \"sklearn.linear_model\", \"param_args\": [], \"param_kwargs\": {\"alpha\": 0.001, \"normalize\": true}, \"prepared_kwargs\": {}, \"spec_class\": \"sklearn\"}], \"pipeline_id\": \"5adc0a4fe02504a586f09a4fcbb241f9a4012062\"}",
"training_percent": "100",
"predicted_cost": "0.062226144097381045",
"iteration": "5",
"run_template": "automl_child",
"run_preprocessor": "StandardScalerWrapper",
"run_algorithm": "LassoLars",
"conda_env_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/conda_env_v_1_0_0.yml",
"model_name": "AutoMLad912b2d65",
"scoring_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/scoring_file_v_1_0_0.py",
"model_data_location": "aml://artifact/ExperimentRun/dcid.AutoML_ad912b2d-6467-4f32-a616-dbe4af6dd8fc_5/outputs/model.pkl"
},
"runStatus": "failed"
},
"dataVersion": "",
"metadataVersion": "1"
}]
L’objet de données comporte les propriétés suivantes pour chaque type d’événement :