Configurer un environnement de développement Python pour Azure Machine Learning
S’APPLIQUE À : Kit de développement logiciel (SDK) Python azure-ai-mlv2 (préversion)
Apprenez à configurer un environnement de développement Python pour Azure Machine Learning.
Le tableau suivant présente chaque environnement de développement évoqué dans cet article, ainsi que ses avantages et inconvénients.
Environnement | Avantages | Inconvénients |
---|---|---|
Environnement local | Contrôle total de votre environnement de développement et des dépendances. Exécutez avec n’importe quel outil de build, environnement ou IDE de votre choix. | La mise en route prend plus de temps. Les packages de Kit de développement logiciel (SDK) nécessaires doivent être installés, ainsi qu’un environnement si vous n’en avez pas encore. |
Data Science Virtual Machine (DSVM) | Similaire à l’instance de calcul basée sur le cloud (Python est préinstallé), mais avec d’autres outils connus de science des données et de machine learning préinstallés. Facile à mettre à l’échelle et à combiner avec d’autres outils et flux de travail personnalisés. | Expérience de démarrage plus lente que celle de l’instance de calcul basée sur le cloud. |
Instance de calcul Azure Machine Learning | Méthode la plus simple pour la mise en route. Le Kit de développement logiciel (SDK) est déjà installé sur votre machine virtuelle d’espace de travail, et les didacticiels du Notebook sont pré-clonés et prêts pour exécution. | Manque de contrôle de votre environnement de développement et des dépendances. Coût supplémentaire pour la machine virtuelle Linux (la machine virtuelle peut être arrêtée lorsqu’elle n’est pas utilisée pour éviter des frais). Consultez les détails de la tarification. |
Cet article fournit également des conseils d’utilisation supplémentaires pour les outils suivants :
Jupyter Notebook : si vous utilisez déjà Jupyter Notebook, le SDK contient des fonctionnalités supplémentaires que vous devez installer.
Visual Studio Code : si vous utilisez Visual Studio Code, l’extension Azure Machine Learning inclut une prise en charge du langage Python et de caractéristiques permettant de travailler avec Azure Machine Learning beaucoup plus facilement et rapidement.
Prérequis
- Espace de travail Azure Machine Learning. SI vous n’en avez pas, vous pouvez créer un espace de travail Azure Machine Learning via le Portail Azure, Azure CLI et les modèles Azure Resource Manager.
Local et DSVM uniquement : Créer un fichier de configuration d’espace de travail
Le fichier de configuration d’espace de travail est un fichier JSON qui indique au SDK comment communiquer avec votre espace de travail Azure Machine Learning. Le fichier est nommé config.json, et il a le format suivant :
{
"subscription_id": "<subscription-id>",
"resource_group": "<resource-group>",
"workspace_name": "<workspace-name>"
}
Ce fichier JSON doit se trouver dans la structure de répertoire qui contient vos scripts Python ou vos blocs-notes Jupyter Notebook. Il peut se trouver dans le même répertoire, dans un sous-répertoire named.azureml* ou dans un répertoire parent.
Pour utiliser ce fichier à partir de votre code, utilisez la méthode MLClient.from_config
. Ce code charge les informations à partir du fichier et se connecte à votre espace de travail.
Créez un fichier de configuration d’espace de travail dans l’une des méthodes suivantes :
Azure Machine Learning Studio
Téléchargez le fichier :
- Connectez-vous à Azure Machine Learning Studio.
- Dans la barre d’outils supérieure droite d’Azure Machine Learning Studio, sélectionnez le nom de votre espace de travail.
- Sélectionnez le lien Télécharger le fichier de configuration.
SDK Python Azure Machine Learning
Créez un script pour vous connecter à votre espace de travail Azure Machine Learning. Assurez-vous de remplacer les valeurs
subscription_id
,resource_group
etworkspace_name
par les vôtres.S’APPLIQUE À : Kit de développement logiciel (SDK) Python azure-ai-mlv2 (préversion)
#import required libraries from azure.ai.ml import MLClient from azure.identity import DefaultAzureCredential #Enter details of your Azure Machine Learning workspace subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' workspace = '<AZUREML_WORKSPACE_NAME>' #connect to the workspace ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group, workspace)
Ordinateur local ou environnement de machine virtuelle distante
Vous pouvez configurer un environnement sur un ordinateur local ou une machine virtuelle distante, telle qu’une instance de calcul Azure Machine Learning ou Data Science VM.
Pour configurer un environnement de développement local ou une machine virtuelle distante :
Créez un environnement virtuel Python (virtualenv, conda).
Notes
Bien que cela ne soit pas obligatoire, il est recommandé d’utiliser Anaconda ou Miniconda pour gérer les environnements virtuels Python et installer les packages.
Important
Si vous avez un environnement Linux ou macOS et utilisez un interpréteur de commandes autre que Bash (par exemple, zsh), des erreurs peuvent s’afficher lorsque vous exécutez certaines commandes. Pour contourner ce problème, utilisez la commande
bash
pour démarrer un nouveau shell Bash et y exécuter les commandes.Activez votre environnement virtuel Python nouvellement créé.
Installez le Kit SDK Python d’Azure Machine Learning.
Pour configurer votre environnement local de sorte qu’il utilise votre espace de travail Azure Machine Learning, créez un fichier de configuration d’espace de travail ou utilisez un fichier existant.
Maintenant que votre environnement local est configuré, vous pouvez commencer à utiliser Azure Machine Learning. Consultez le didacticiel : Azure Machine Learning en une journée pour commencer.
Notebooks Jupyter
Lorsque vous exécutez un serveur Jupyter Notebook local, nous vous recommandons de créer un noyau IPython pour votre environnement virtuel Python. Cela permet de s’assurer du bon déroulement de l’importation du noyau et du package.
Activer les noyaux IPython spécifiques à l’environnement
conda install notebook ipykernel
Créez un noyau pour votre environnement virtuel Python. Veillez à remplacer
<myenv>
par le nom de votre environnement virtuel Python.ipython kernel install --user --name <myenv> --display-name "Python (myenv)"
Démarrer le serveur Jupyter Notebook
Conseil
Par exemple, consultez le référentiel AzureML-Examples . Les exemples de KIT de développement logiciel (SDK) se trouvent sous /sdk/python. Par exemple, l’exemple de notebook Configuration .
Visual Studio Code
Pour utiliser Visual Studio Code dans le cadre du développement :
- Installez Visual Studio Code.
- Installer l’extension Azure Machine Learning de Visual Studio Code (préversion).
Une fois l’extension Visual Studio Code installée, utilisez-la pour :
- Gérer vos ressources Azure Machine Learning
- Vous connecter à une instance de calcul Azure Machine Learning
- Déboguer localement des points de terminaison en ligne
- Déployer des modèles formés.
Instance de calcul Azure Machine Learning
L’instance de calcul Azure Machine Learning est une station de travail Azure sécurisée et basée sur le cloud, qui fournit aux scientifiques des données un serveur Jupyter Notebook, un JupyterLab et un environnement de Machine Learning entièrement géré.
Vous n’avez rien à installer ou à configurer pour une instance de calcul.
créez à tout moment depuis votre espace de travail Azure Machine Learning. Indiquez juste un nom et spécifiez un type de machine virtuelle Azure. Essayez-le maintenant avec Créer des ressources pour commencer.
Pour en savoir plus sur les instances de calcul, notamment sur l’installation de packages, consultez Créer une instance de calcul Azure Machine Learning.
Conseil
Pour éviter les frais associés à une instance de calcul inutilisée, activez l’arrêt en cas d’inactivité.
En plus d’un serveur Jupyter Notebook et d’un JupyterLab, vous pouvez utiliser des instances de calcul dans la fonctionnalité de notebook intégrée à Azure Machine Learning Studio.
Vous pouvez également utiliser l’extension Azure Machine Learning Visual Studio Code pour vous connecter à une instance de calcul distante à l’aide de VS Code.
Machine virtuelle de science des données
Data Science VM est une image de machine virtuelle personnalisée que vous pouvez utiliser comme environnement de développement. Elle est conçue pour les travaux de science des données préconfigurés avec les outils et logiciels tels que :
- Des packages tels que TensorFlow, PyTorch, Scikit-learn, XGBoost et le Kit de développement logiciel (SDK) Azure Machine Learning.
- Des outils de science des données appréciés tels que Spark Standalone et Drill.
- Des outils Azure tels que Azure CLI, AzCopy et Explorateur Stockage.
- Des environnements de développement intégrés (IDE) tels que Visual Studio Code et PyCharm.
- Serveur Jupyter Notebook
Pour une liste d’outils complète, consultez le guide des outils Data Science VM.
Important
Si vous envisagez d’utiliser Data Science VM comme cible de calcul pour vos tâches d’apprentissage ou d’inférence, seule la version Ubuntu est prise en charge.
Pour utiliser Data Science VM comme environnement de développement :
Créez une Data Science VM au moyen de l’une des méthodes suivantes :
Utilisez le Portail Azure pour créer une DSVM Ubuntu ou Windows.
Utiliser Azure CLI
Pour créer une Data Science VM Ubuntu, utilisez la commande suivante :
# create a Ubuntu Data Science VM in your resource group # note you need to be at least a contributor to the resource group in order to execute this command successfully # If you need to create a new resource group use: "az group create --name YOUR-RESOURCE-GROUP-NAME --location YOUR-REGION (For example: westus2)" az vm create --resource-group YOUR-RESOURCE-GROUP-NAME --name YOUR-VM-NAME --image microsoft-dsvm:linux-data-science-vm-ubuntu:linuxdsvmubuntu:latest --admin-username YOUR-USERNAME --admin-password YOUR-PASSWORD --generate-ssh-keys --authentication-type password
Pour créer une DSVM Windows, utilisez la commande suivante :
# create a Windows Server 2016 DSVM in your resource group # note you need to be at least a contributor to the resource group in order to execute this command successfully az vm create --resource-group YOUR-RESOURCE-GROUP-NAME --name YOUR-VM-NAME --image microsoft-dsvm:dsvm-windows:server-2016:latest --admin-username YOUR-USERNAME --admin-password YOUR-PASSWORD --authentication-type password
Créez un environnement conda pour le Kit de développement logiciel (SDK) Azure Machine Learning :
conda create -n py310 python=310
Une fois l’environnement créé, activez-le et installez le Kit de développement logiciel (SDK)
conda activate py310 pip install azure-ai-ml azure-identity
Pour configurer la Data Science VM de manière à utiliser votre espace de travail Azure Machine Learning, créez un fichier de configuration d’espace de travail ou utilisez un fichier existant.
Conseil
À l’instar des environnements locaux, vous pouvez utiliser Visual Studio Code et l’extension Visual Studio Code d’Azure Machine Learning pour interagir avec Azure Machine Learning.
Pour plus d’informations, consultez la page Machines virtuelles Science des données.
Étapes suivantes
- Entraînez et déployez un modèle sur Azure Machine Learning avec le jeu de données MNIST.
- Voir les informations de référence sur le Kit de développement logiciel (SDK) Azure Machine Learning pour Python.