Le jeu de données sur le diabète contient 442 échantillons avec 10 caractéristiques, ce qui en fait un outil idéal pour commencer à utiliser des algorithmes Machine Learning. Il s’agit de l’un des jeux de données d’essai de Scikit-learn les plus populaires.
Microsoft fournit Azure Open Datasets « en l’état ». Microsoft n’offre aucune garantie, expresse ou implicite, ni de conditions relatives à votre utilisation des jeux de données. Dans la mesure autorisée par votre droit local, Microsoft décline toute responsabilité pour les dommages ou pertes, y compris directs, consécutifs, spéciaux, indirects ou punitifs, résultant de votre utilisation des jeux de données.
Ce jeu de données est fourni selon les conditions initiales par lesquelles Microsoft a reçu les données sources. Le jeu de données peut inclure des données provenant de Microsoft.
Colonnes
Nom
Type de données
Unique
Valeurs (exemple)
AGE
bigint
58
53 60
BMI
double
163
24,1 23,5
BP
double
100
93 83
S1
bigint
141
162 184
S2
double
302
125,8 114,8
S3
double
63
46 38
S4
double
66
3 4
S5
double
184
4,4427 4,3041
S6
bigint
56
92 96
SEX
bigint
2
1 2
O
bigint
214
72 200
Préversion
AGE
SEX
BMI
BP
S1
S2
S3
S4
S5
S6
O
59
2
32,1
101
157
93,2
38
4
4,8598
87
151
48
1
21,6
87
183
103,2
70
3
3,8918
69
75
72
2
30.5
93
156
93,6
41
4
4,6728
85 %
141
24
1
25,3
84
198
131,4
40
5
4,8903
89
206
50
1
23
101
192
125,4
52
4
4,2905
80
135
23
1
22,6
89
139
64,8
61
2
4,1897
68
97
36
2
22
90
160
99,6
50
3
3,9512
82
138
66
2
26,2
114
255
185
56
4.55
4.2485
92
63
60
2
32,1
83
179
119,4
42
4
4,4773
94
110
29
1
30
85 %
180
93,4
43
4
5,3845
88
310
Accès aux données
Utilisez les exemples de code suivants pour accéder à ce jeu de données dans Azure Notebooks, Azure Databricks ou Azure Synapse.
# This is a package in preview.
from azureml.opendatasets import Diabetes
diabetes = Diabetes.get_tabular_dataset()
diabetes_df = diabetes.to_pandas_dataframe()
diabetes_df.info()
# Pip install packages
import os, sys
!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "mlsamples"
folder_name = "diabetes"
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
Exemple non disponible pour cette combinaison de plateforme et de package.
# This is a package in preview.
from azureml.opendatasets import Diabetes
diabetes = Diabetes.get_tabular_dataset()
diabetes_df = diabetes.to_spark_dataframe()
display(diabetes_df.limit(5))
Exemple non disponible pour cette combinaison de plateforme et de package.
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "mlsamples"
blob_relative_path = "diabetes"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))