Partager via


Démarrage rapide : déployer le service de Recherche Azure AI à l’aide de Terraform

Cet article explique comment créer un service de Recherche Azure AI à l’aide de Terraform.

Terraform permet la définition, l’aperçu et le déploiement d’une infrastructure cloud. Terraform vous permet de créer des fichiers de configuration à l’aide de la syntaxe HCL. La syntaxe HCL vous permet de spécifier un fournisseur de services cloud, tel qu’Azure, et les éléments qui composent votre infrastructure cloud. Après avoir créé vos fichiers de configuration, vous créez un plan d’exécution qui vous permet d’afficher un aperçu de vos modifications d’infrastructure avant leur déploiement. Une fois que vous avez vérifié les modifications, vous appliquez le plan d’exécution pour déployer l’infrastructure.

Dans cet article, vous apprendrez comment :

Prérequis

Implémenter le code Terraform

  1. Créez un répertoire dans lequel tester et exécuter l’exemple de code Terraform et définissez-le en tant que répertoire actif.

  2. Créez un fichier nommé main.tf et insérez le code suivant :

    resource "random_pet" "rg_name" {
      prefix = var.resource_group_name_prefix
    }
    
    resource "azurerm_resource_group" "rg" {
      name     = random_pet.rg_name.id
      location = var.resource_group_location
    }
    
    resource "random_string" "azurerm_search_service_name" {
      length  = 25
      upper   = false
      numeric = false
      special = false
    }
    
    resource "azurerm_search_service" "search" {
      name                = random_string.azurerm_search_service_name.result
      resource_group_name = azurerm_resource_group.rg.name
      location            = azurerm_resource_group.rg.location
      sku                 = var.sku
      replica_count       = var.replica_count
      partition_count     = var.partition_count
    }
    
  3. Créez un fichier nommé outputs.tf et insérez le code suivant :

    output "resource_group_name" {
      value = azurerm_resource_group.rg.name
    }
    
    output "azurerm_search_service_name" {
      value = azurerm_search_service.search.name
    }
    
  4. Créez un fichier nommé providers.tf et insérez le code suivant :

    terraform {
      required_version = ">=1.0"
      required_providers {
        azurerm = {
          source  = "hashicorp/azurerm"
          version = "~>3.0"
        }
        random = {
          source  = "hashicorp/random"
          version = "~>3.0"
        }
      }
    }
    provider "azurerm" {
      features {}
    }
    
  5. Créez un fichier nommé variables.tf et insérez le code suivant :

    variable "resource_group_location" {
      type        = string
      description = "Location for all resources."
      default     = "eastus"
    }
    
    variable "resource_group_name_prefix" {
      type        = string
      description = "Prefix of the resource group name that's combined with a random ID so name is unique in your Azure subscription."
      default     = "rg"
    }
    
    variable "sku" {
      description = "The pricing tier of the search service you want to create (for example, basic or standard)."
      default     = "standard"
      type        = string
      validation {
        condition     = contains(["free", "basic", "standard", "standard2", "standard3", "storage_optimized_l1", "storage_optimized_l2"], var.sku)
        error_message = "The sku must be one of the following values: free, basic, standard, standard2, standard3, storage_optimized_l1, storage_optimized_l2."
      }
    }
    
    variable "replica_count" {
      type        = number
      description = "Replicas distribute search workloads across the service. You need at least two replicas to support high availability of query workloads (not applicable to the free tier)."
      default     = 1
      validation {
        condition     = var.replica_count >= 1 && var.replica_count <= 12
        error_message = "The replica_count must be between 1 and 12."
      }
    }
    
    variable "partition_count" {
      type        = number
      description = "Partitions allow for scaling of document count as well as faster indexing by sharding your index over multiple search units."
      default     = 1
      validation {
        condition     = contains([1, 2, 3, 4, 6, 12], var.partition_count)
        error_message = "The partition_count must be one of the following values: 1, 2, 3, 4, 6, 12."
      }
    }
    

Initialiser Terraform

Exécutez terraform init pour initialiser le déploiement Terraform. Cette commande télécharge le fournisseur Azure à utiliser pour la gestion de vos ressources Azure.

terraform init -upgrade

Points essentiels :

  • Le paramètre -upgrade met à niveau les plug-ins de fournisseur nécessaires vers la version la plus récente qui est conforme aux contraintes de version de la configuration.

Créer un plan d’exécution Terraform

Exécutez terraform plan pour créer un plan d’exécution.

terraform plan -out main.tfplan

Points essentiels :

  • La commande terraform plan crée un plan d’exécution, mais ne l’exécute pas. Au lieu de cela, elle détermine les actions nécessaires pour créer la configuration spécifiée dans vos fichiers de configuration. Ce modèle vous permet de vérifier si le plan d’exécution répond à vos attentes avant d’apporter des modifications aux ressources réelles.
  • Le paramètre facultatif -out vous permet de spécifier un fichier de sortie pour le plan. L’utilisation du paramètre -out garantit que le plan que vous avez examiné correspond exactement à ce qui est appliqué.

Appliquer un plan d’exécution Terraform

Exécutez terraform apply pour appliquer le plan d’exécution à votre infrastructure cloud.

terraform apply main.tfplan

Points essentiels :

  • La commande exemple terraform apply part du principe que vous avez préalablement exécuté terraform plan -out main.tfplan.
  • Si vous avez spécifié un autre nom de fichier pour le paramètre -out, utilisez ce même nom dans l’appel à terraform apply.
  • Si vous n’avez pas utilisé le paramètre -out, appelez terraform apply sans aucun paramètre.

Vérifier les résultats

  1. Obtenez le nom de la ressource Azure dans laquelle le service de Recherche Azure AI a été créé.

    resource_group_name=$(terraform output -raw resource_group_name)
    
  2. Obtenez le nom du service de Recherche Azure AI.

    azurerm_search_service_name=$(terraform output -raw azurerm_search_service_name)
    
  3. Pour afficher le service de Recherche Azure AI que vous avez créé dans cet article, exécutez az search service show.

    az search service show --name $azurerm_search_service_name \
                           --resource-group $resource_group_name
    

Nettoyer les ressources

Quand vous n’avez plus besoin des ressources créées par le biais de Terraform, effectuez les étapes suivantes :

  1. Exécutez le plan Terraform et spécifiez l’indicateur destroy.

    terraform plan -destroy -out main.destroy.tfplan
    

    Points essentiels :

    • La commande terraform plan crée un plan d’exécution, mais ne l’exécute pas. Au lieu de cela, elle détermine les actions nécessaires pour créer la configuration spécifiée dans vos fichiers de configuration. Ce modèle vous permet de vérifier si le plan d’exécution répond à vos attentes avant d’apporter des modifications aux ressources réelles.
    • Le paramètre facultatif -out vous permet de spécifier un fichier de sortie pour le plan. L’utilisation du paramètre -out garantit que le plan que vous avez examiné correspond exactement à ce qui est appliqué.
  2. Exécutez terraform apply pour appliquer le plan d’exécution.

    terraform apply main.destroy.tfplan
    

Résoudre les problèmes liés à Terraform sur Azure

Résoudre les problèmes courants liés à l’utilisation de Terraform sur Azure

Étapes suivantes