DataOperationsCatalog.FilterRowsByColumn Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Filtrez le jeu de données par les valeurs d’une colonne numérique.
public Microsoft.ML.IDataView FilterRowsByColumn (Microsoft.ML.IDataView input, string columnName, double lowerBound = -∞, double upperBound = ∞);
member this.FilterRowsByColumn : Microsoft.ML.IDataView * string * double * double -> Microsoft.ML.IDataView
Public Function FilterRowsByColumn (input As IDataView, columnName As String, Optional lowerBound As Double = -∞, Optional upperBound As Double = ∞) As IDataView
Paramètres
- input
- IDataView
Données d'entrée.
- columnName
- String
Nom d’une colonne à utiliser pour le filtrage.
- lowerBound
- Double
Limite inférieure inclusive.
- upperBound
- Double
Limite supérieure exclusive.
Retours
Exemples
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class FilterRowsByColumn
{
// // Sample class showing how to filter out some rows in
// IDataView.
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available
// operations and as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var enumerableOfData = GetSampleTemperatureData(10);
var data = mlContext.Data.LoadFromEnumerable(enumerableOfData);
// Before we apply a filter, examine all the records in the dataset.
Console.WriteLine($"Date\tTemperature");
foreach (var row in enumerableOfData)
{
Console.WriteLine(
$"{row.Date.ToString("d")}\t{row.Temperature}");
}
Console.WriteLine();
// Expected output:
// Date Temperature
// 1/2/2012 36
// 1/3/2012 36
// 1/4/2012 34
// 1/5/2012 35
// 1/6/2012 35
// 1/7/2012 39
// 1/8/2012 40
// 1/9/2012 35
// 1/10/2012 30
// 1/11/2012 29
// Filter the data by the values of the temperature. The lower bound is
// inclusive, the upper exclusive.
var filteredData = mlContext.Data
.FilterRowsByColumn(data, columnName: "Temperature",
lowerBound: 34, upperBound: 37);
// Look at the filtered data and observe that values outside [34,37)
// have been dropped.
var enumerable = mlContext.Data
.CreateEnumerable<SampleTemperatureData>(filteredData,
reuseRowObject: true);
Console.WriteLine($"Date\tTemperature");
foreach (var row in enumerable)
{
Console.WriteLine(
$"{row.Date.ToString("d")}\t{row.Temperature}");
}
// Expected output:
// Date Temperature
// 1/2/2012 36
// 1/3/2012 36
// 1/4/2012 34
// 1/5/2012 35
// 1/6/2012 35
// 1/9/2012 35
}
private class SampleTemperatureData
{
public DateTime Date { get; set; }
public float Temperature { get; set; }
}
/// <summary>
/// Get a fake temperature dataset.
/// </summary>
/// <param name="exampleCount">The number of examples to return.</param>
/// <returns>An enumerable of <see cref="SampleTemperatureData"/>.</returns>
private static IEnumerable<SampleTemperatureData> GetSampleTemperatureData(
int exampleCount)
{
var rng = new Random(1234321);
var date = new DateTime(2012, 1, 1);
float temperature = 39.0f;
for (int i = 0; i < exampleCount; i++)
{
date = date.AddDays(1);
temperature += rng.Next(-5, 5);
yield return new SampleTemperatureData
{
Date = date,
Temperature =
temperature
};
}
}
}
}
Remarques
Conservez uniquement ces lignes qui répondent à la condition de plage : la valeur de la colonne columnName
doit être comprise entre lowerBound
(inclusive) et upperBound
(exclusive).