NormalizationCatalog.NormalizeBinning Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Surcharges
NormalizeBinning(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, Int32) |
Créez un NormalizingEstimator, qui normalise en affectant les données dans des bacs avec une densité égale. |
NormalizeBinning(TransformsCatalog, String, String, Int64, Boolean, Int32) |
Créez un NormalizingEstimator, qui normalise en affectant les données dans des bacs avec une densité égale. |
NormalizeBinning(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, Int32)
Créez un NormalizingEstimator, qui normalise en affectant les données dans des bacs avec une densité égale.
public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeBinning (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024);
static member NormalizeBinning : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * int -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeBinning (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024) As NormalizingEstimator
Paramètres
- catalog
- TransformsCatalog
Catalogue de transformation
- columns
- InputOutputColumnPair[]
Paires de colonnes d’entrée et de sortie. Les colonnes d’entrée doivent être de type Singlede données, Double ou un vecteur de taille connue de ces types. Le type de données de la colonne de sortie est identique à la colonne d’entrée associée.
- maximumExampleCount
- Int64
Nombre maximal d’exemples utilisés pour entraîner le normaliseur.
- fixZero
- Boolean
Indique s’il faut mapper zéro à zéro, en conservant une éparse.
- maximumBinCount
- Int32
Nombre maximal de bacs (puissance de 2 recommandée).
Retours
Exemples
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeBinningMulticolumn
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
Features2 = 1 },
new DataPoint(){ Features = new float[4] { 6, 2, 2, 0},
Features2 = 4 },
new DataPoint(){ Features = new float[4] { 4, 0, 1, 0},
Features2 = 1 },
new DataPoint(){ Features = new float[4] { 2,-1,-1, 1},
Features2 = 2 }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// NormalizeBinning normalizes the data by constructing equidensity bins
// and produce output based on to which bin the original value belongs.
var normalize = mlContext.Transforms.NormalizeBinning(new[]{
new InputOutputColumnPair("Features"),
new InputOutputColumnPair("Features2"),
},
maximumBinCount: 4, fixZero: false);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
var column2 = transformedData.GetColumn<float>("Features2").ToArray();
for (int i = 0; i < column.Length; i++)
Console.WriteLine(string.Join(", ", column[i].Select(x => x
.ToString("f4"))) + "\t\t" + column2[i]);
// Expected output:
//
// Features Feature2
// 1.0000, 0.6667, 1.0000, 0.0000 0
// 0.6667, 1.0000, 0.6667, 0.0000 1
// 0.3333, 0.3333, 0.3333, 0.0000 0
// 0.0000, 0.0000, 0.0000, 1.0000 0.5
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
public float Features2 { get; set; }
}
}
}
S’applique à
NormalizeBinning(TransformsCatalog, String, String, Int64, Boolean, Int32)
Créez un NormalizingEstimator, qui normalise en affectant les données dans des bacs avec une densité égale.
public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeBinning (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024);
static member NormalizeBinning : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * int -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeBinning (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024) As NormalizingEstimator
Paramètres
- catalog
- TransformsCatalog
Catalogue de transformation
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnName
.
Le type de données de cette colonne est identique à la colonne d’entrée.
- inputColumnName
- String
Nom de la colonne à transformer. Si elle est définie sur null
, la valeur du outputColumnName
fichier sera utilisée comme source.
Le type de données de cette colonne doit être Single, Double ou un vecteur de taille connue de ces types.
- maximumExampleCount
- Int64
Nombre maximal d’exemples utilisés pour entraîner le normaliseur.
- fixZero
- Boolean
Indique s’il faut mapper zéro à zéro, en conservant une éparse.
- maximumBinCount
- Int32
Nombre maximal de bacs (puissance de 2 recommandée).
Retours
Exemples
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeBinning
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging,
// as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 8, 1, 3, 0} },
new DataPoint(){ Features = new float[4] { 6, 2, 2, 0} },
new DataPoint(){ Features = new float[4] { 4, 0, 1, 0} },
new DataPoint(){ Features = new float[4] { 2,-1,-1, 1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// NormalizeBinning normalizes the data by constructing equidensity bins
// and produce output based on
// to which bin the original value belongs.
var normalize = mlContext.Transforms.NormalizeBinning("Features",
maximumBinCount: 4, fixZero: false);
// NormalizeBinning normalizes the data by constructing equidensity bins
// and produce output based on to which bin original value belong but
// make sure zero values would remain zero after normalization. Helps
// preserve sparsity.
var normalizeFixZero = mlContext.Transforms.NormalizeBinning("Features",
maximumBinCount: 4, fixZero: true);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
var fixZeroData = normalizeFixZeroTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 1.0000, 0.6667, 1.0000, 0.0000
// 0.6667, 1.0000, 0.6667, 0.0000
// 0.3333, 0.3333, 0.3333, 0.0000
// 0.0000, 0.0000, 0.0000, 1.0000
var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
.ToArray();
foreach (var row in columnFixZero)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 1.0000, 0.3333, 1.0000, 0.0000
// 0.6667, 0.6667, 0.6667, 0.0000
// 0.3333, 0.0000, 0.3333, 0.0000
// 0.0000, -0.3333, 0.0000, 1.0000
// Let's get transformation parameters. Since we work with only one
// column we need to pass 0 as parameter for
// GetNormalizerModelParameters. If we have multiple columns
// transformations we need to pass index of InputOutputColumnPair.
var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
as BinNormalizerModelParameters<ImmutableArray<float>>;
var density = transformParams.Density[0];
var offset = (transformParams.Offset.Length == 0 ? 0 : transformParams
.Offset[0]);
Console.WriteLine($"The 0-index value in resulting array would be " +
$"produce by: y = (Index(x) / {density}) - {offset}");
Console.WriteLine("Where Index(x) is the index of the bin to which " +
"x belongs");
Console.WriteLine("Bins upper bounds are: " + string.Join(" ",
transformParams.UpperBounds[0]));
// Expected output:
// The 0-index value in resulting array would be produce by: y = (Index(x) / 3) - 0
// Where Index(x) is the index of the bin to which x belongs
// Bins upper bounds are: 3 5 7 ∞
var fixZeroParams = (normalizeFixZeroTransform
.GetNormalizerModelParameters(0) as BinNormalizerModelParameters<
ImmutableArray<float>>);
density = fixZeroParams.Density[1];
offset = (fixZeroParams.Offset.Length == 0 ? 0 : fixZeroParams
.Offset[1]);
Console.WriteLine($"The 0-index value in resulting array would be " +
$"produce by: y = (Index(x) / {density}) - {offset}");
Console.WriteLine("Where Index(x) is the index of the bin to which x " +
"belongs");
Console.WriteLine("Bins upper bounds are: " + string.Join(" ",
fixZeroParams.UpperBounds[1]));
// Expected output:
// The 0-index value in resulting array would be produce by: y = (Index(x) / 3) - 0.3333333
// Where Index(x) is the index of the bin to which x belongs
// Bins upper bounds are: -0.5 0.5 1.5 ∞
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
}
}
}