Partager via


NormalizationCatalog.NormalizeGlobalContrast Méthode

Définition

Créez un GlobalContrastNormalizingEstimator, qui normalise les colonnes individuellement en appliquant la normalisation du contraste global. Le paramètre ensureZeroMean sur true, applique une étape de prétraitement pour que la moyenne de la colonne spécifiée soit le vecteur zéro.

public static Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator NormalizeGlobalContrast (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, bool ensureZeroMean = true, bool ensureUnitStandardDeviation = false, float scale = 1);
static member NormalizeGlobalContrast : Microsoft.ML.TransformsCatalog * string * string * bool * bool * single -> Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator
<Extension()>
Public Function NormalizeGlobalContrast (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional ensureZeroMean As Boolean = true, Optional ensureUnitStandardDeviation As Boolean = false, Optional scale As Single = 1) As GlobalContrastNormalizingEstimator

Paramètres

catalog
TransformsCatalog

Catalogue de la transformation.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Le type de données de cette colonne sera identique au type de données de la colonne d’entrée.

inputColumnName
String

Nom de la colonne à normaliser. Si la valeur est définie null, la valeur du outputColumnName fichier sera utilisée comme source. Cet estimateur opère sur des vecteurs de taille connue de Single.

ensureZeroMean
Boolean

Si true, soustrait la moyenne de chaque valeur avant de normaliser et d’utiliser l’entrée brute sinon.

ensureUnitStandardDeviation
Boolean

Si true, l’écart type du vecteur résultant serait un. Sinon, la norme L2 du vecteur résultant serait une.

scale
Single

Mettez à l’échelle les fonctionnalités par cette valeur.

Retours

Exemples

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    class NormalizeGlobalContrast
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 1, 1, 0, 0} },
                new DataPoint(){ Features = new float[4] { 2, 2, 0, 0} },
                new DataPoint(){ Features = new float[4] { 1, 0, 1, 0} },
                new DataPoint(){ Features = new float[4] { 0, 1, 0, 1} }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            var approximation = mlContext.Transforms.NormalizeGlobalContrast(
                "Features", ensureZeroMean: false, scale: 2,
                ensureUnitStandardDeviation: true);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var tansformer = approximation.Fit(data);
            var transformedData = tansformer.Transform(data);

            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  2.0000, 2.0000,-2.0000,-2.0000
            //  2.0000, 2.0000,-2.0000,-2.0000
            //  2.0000,-2.0000, 2.0000,-2.0000
            //- 2.0000, 2.0000,-2.0000, 2.0000
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }
        }
    }
}

S’applique à