Partager via


TextCatalog.ApplyWordEmbedding Méthode

Définition

Surcharges

ApplyWordEmbedding(TransformsCatalog+TextTransforms, String, String, WordEmbeddingEstimator+PretrainedModelKind)

Créez un WordEmbeddingEstimatorgénérateur de texte qui convertit un vecteur de texte en vecteur numérique à l’aide de modèles incorporés préentraînés.

ApplyWordEmbedding(TransformsCatalog+TextTransforms, String, String, String)

Créez un WordEmbeddingEstimatorgénérateur de texte qui convertit des vecteurs de texte en vecteurs numériques à l’aide de modèles incorporés préentraînés.

ApplyWordEmbedding(TransformsCatalog+TextTransforms, String, String, WordEmbeddingEstimator+PretrainedModelKind)

Créez un WordEmbeddingEstimatorgénérateur de texte qui convertit un vecteur de texte en vecteur numérique à l’aide de modèles incorporés préentraînés.

public static Microsoft.ML.Transforms.Text.WordEmbeddingEstimator ApplyWordEmbedding (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.Text.WordEmbeddingEstimator.PretrainedModelKind modelKind = Microsoft.ML.Transforms.Text.WordEmbeddingEstimator+PretrainedModelKind.SentimentSpecificWordEmbedding);
static member ApplyWordEmbedding : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * Microsoft.ML.Transforms.Text.WordEmbeddingEstimator.PretrainedModelKind -> Microsoft.ML.Transforms.Text.WordEmbeddingEstimator
<Extension()>
Public Function ApplyWordEmbedding (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional modelKind As WordEmbeddingEstimator.PretrainedModelKind = Microsoft.ML.Transforms.Text.WordEmbeddingEstimator+PretrainedModelKind.SentimentSpecificWordEmbedding) As WordEmbeddingEstimator

Paramètres

catalog
TransformsCatalog.TextTransforms

Catalogue de transformation liée au texte.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Le type de données de cette colonne sera un vecteur de Single.

inputColumnName
String

Nom de la colonne à transformer. Si elle est définie sur null, la valeur du outputColumnName fichier sera utilisée comme source. Cet estimateur fonctionne sur le vecteur de taille connue du type de données texte.

Retours

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Transforms.Text;

namespace Samples.Dynamic
{
    public static class ApplyWordEmbedding
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create an empty list as the dataset. The 'ApplyWordEmbedding' does
            // not require training data as the estimator ('WordEmbeddingEstimator')
            // created by 'ApplyWordEmbedding' API is not a trainable estimator.
            // The empty list is only needed to pass input schema to the pipeline.
            var emptySamples = new List<TextData>();

            // Convert sample list to an empty IDataView.
            var emptyDataView = mlContext.Data.LoadFromEnumerable(emptySamples);

            // A pipeline for converting text into a 150-dimension embedding vector
            // using pretrained 'SentimentSpecificWordEmbedding' model. The
            // 'ApplyWordEmbedding' computes the minimum, average and maximum values
            // for each token's embedding vector. Tokens in 
            // 'SentimentSpecificWordEmbedding' model are represented as
            // 50 -dimension vector. Therefore, the output is of 150-dimension [min,
            // avg, max].
            //
            // The 'ApplyWordEmbedding' API requires vector of text as input.
            // The pipeline first normalizes and tokenizes text then applies word
            // embedding transformation.
            var textPipeline = mlContext.Transforms.Text.NormalizeText("Text")
                .Append(mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
                    "Text"))
                .Append(mlContext.Transforms.Text.ApplyWordEmbedding("Features",
                    "Tokens", WordEmbeddingEstimator.PretrainedModelKind
                    .SentimentSpecificWordEmbedding));

            // Fit to data.
            var textTransformer = textPipeline.Fit(emptyDataView);

            // Create the prediction engine to get the embedding vector from the
            // input text/string.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(textTransformer);

            // Call the prediction API to convert the text into embedding vector.
            var data = new TextData()
            {
                Text = "This is a great product. I would " +
                "like to buy it again."
            };
            var prediction = predictionEngine.Predict(data);

            // Print the length of the embedding vector.
            Console.WriteLine($"Number of Features: {prediction.Features.Length}");

            // Print the embedding vector.
            Console.Write("Features: ");
            foreach (var f in prediction.Features)
                Console.Write($"{f:F4} ");

            //  Expected output:
            //   Number of Features: 150
            //   Features: -1.2489 0.2384 -1.3034 -0.9135 -3.4978 -0.1784 -1.3823 -0.3863 -2.5262 -0.8950 ...
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public float[] Features { get; set; }
        }
    }
}

S’applique à

ApplyWordEmbedding(TransformsCatalog+TextTransforms, String, String, String)

Créez un WordEmbeddingEstimatorgénérateur de texte qui convertit des vecteurs de texte en vecteurs numériques à l’aide de modèles incorporés préentraînés.

public static Microsoft.ML.Transforms.Text.WordEmbeddingEstimator ApplyWordEmbedding (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string customModelFile, string inputColumnName = default);
static member ApplyWordEmbedding : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * string -> Microsoft.ML.Transforms.Text.WordEmbeddingEstimator
<Extension()>
Public Function ApplyWordEmbedding (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, customModelFile As String, Optional inputColumnName As String = Nothing) As WordEmbeddingEstimator

Paramètres

catalog
TransformsCatalog.TextTransforms

Catalogue de transformation liée au texte.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Le type de données de cette colonne sera un vecteur de Single.

customModelFile
String

Chemin d’accès du modèle d’incorporation préentraîné à utiliser.

inputColumnName
String

Nom de la colonne à transformer. Si elle est définie sur null, la valeur du outputColumnName fichier sera utilisée comme source. Cet estimateur fonctionne sur le vecteur de taille connue du type de données texte.

Retours

Exemples

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class ApplyCustomWordEmbedding
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create an empty list as the dataset. The 'ApplyWordEmbedding' does
            // not require training data as the estimator ('WordEmbeddingEstimator')
            // created by 'ApplyWordEmbedding' API is not a trainable estimator.
            // The empty list is only needed to pass input schema to the pipeline.
            var emptySamples = new List<TextData>();

            // Convert sample list to an empty IDataView.
            var emptyDataView = mlContext.Data.LoadFromEnumerable(emptySamples);

            // Write a custom 3-dimensional word embedding model with 4 words.
            // Each line follows '<word> <float> <float> <float>' pattern.
            // Lines that do not confirm to the pattern are ignored.
            var pathToCustomModel = @".\custommodel.txt";
            using (StreamWriter file = new StreamWriter(pathToCustomModel, false))
            {
                file.WriteLine("great 1.0 2.0 3.0");
                file.WriteLine("product -1.0 -2.0 -3.0");
                file.WriteLine("like -1 100.0 -100");
                file.WriteLine("buy 0 0 20");
            }

            // A pipeline for converting text into a 9-dimension word embedding
            // vector using the custom word embedding model. The 
            // 'ApplyWordEmbedding' computes the minimum, average and maximum values
            // for each token's embedding vector. Tokens in 'custommodel.txt' model
            // are represented as 3-dimension vector. Therefore, the output is of
            // 9 -dimension [min, avg, max].
            //
            // The 'ApplyWordEmbedding' API requires vector of text as input.
            // The pipeline first normalizes and tokenizes text then applies word
            // embedding transformation.
            var textPipeline = mlContext.Transforms.Text.NormalizeText("Text")
                .Append(mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
                    "Text"))
                .Append(mlContext.Transforms.Text.ApplyWordEmbedding("Features",
                    pathToCustomModel, "Tokens"));

            // Fit to data.
            var textTransformer = textPipeline.Fit(emptyDataView);

            // Create the prediction engine to get the embedding vector from the
            // input text/string.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(textTransformer);

            // Call the prediction API to convert the text into embedding vector.
            var data = new TextData()
            {
                Text = "This is a great product. I would " +
                "like to buy it again."
            };
            var prediction = predictionEngine.Predict(data);

            // Print the length of the embedding vector.
            Console.WriteLine($"Number of Features: {prediction.Features.Length}");

            // Print the embedding vector.
            Console.Write("Features: ");
            foreach (var f in prediction.Features)
                Console.Write($"{f:F4} ");

            //  Expected output:
            //   Number of Features: 9
            //   Features: -1.0000 0.0000 -100.0000 0.0000 34.0000 -25.6667 1.0000 100.0000 20.0000
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public float[] Features { get; set; }
        }
    }
}

S’applique à