Partager via


TextCatalog.FeaturizeText Méthode

Définition

Surcharges

FeaturizeText(TransformsCatalog+TextTransforms, String, String)

Créez une TextFeaturizingEstimatorcolonne de texte qui transforme une colonne de texte en vecteur exploitable de ce qui représente des nombres normalisés de Single n-grammes et de grammes de caractères.

FeaturizeText(TransformsCatalog+TextTransforms, String, TextFeaturizingEstimator+Options, String[])

Créez une TextFeaturizingEstimatorcolonne de texte qui transforme une colonne de texte en vecteur exploitable de Single ce qui représente le nombre normalisé de n-grammes et de grammes de caractères.

FeaturizeText(TransformsCatalog+TextTransforms, String, String)

Créez une TextFeaturizingEstimatorcolonne de texte qui transforme une colonne de texte en vecteur exploitable de ce qui représente des nombres normalisés de Single n-grammes et de grammes de caractères.

public static Microsoft.ML.Transforms.Text.TextFeaturizingEstimator FeaturizeText (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default);
static member FeaturizeText : Microsoft.ML.TransformsCatalog.TextTransforms * string * string -> Microsoft.ML.Transforms.Text.TextFeaturizingEstimator
<Extension()>
Public Function FeaturizeText (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing) As TextFeaturizingEstimator

Paramètres

catalog
TransformsCatalog.TextTransforms

Catalogue de transformation liée au texte.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Le type de données de cette colonne sera un vecteur de Single.

inputColumnName
String

Nom de la colonne à transformer. Si elle est définie sur null, la valeur du outputColumnName fichier sera utilisée comme source. Cet estimateur fonctionne sur les données texte.

Retours

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class FeaturizeText
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create a small dataset as an IEnumerable.
            var samples = new List<TextData>()
            {
                new TextData(){ Text = "ML.NET's FeaturizeText API uses a " +
                    "composition of several basic transforms to convert text " +
                    "into numeric features." },

                new TextData(){ Text = "This API can be used as a featurizer to " +
                    "perform text classification." },

                new TextData(){ Text = "There are a number of approaches to text " +
                    "classification." },

                new TextData(){ Text = "One of the simplest and most common " +
                    "approaches is called “Bag of Words”." },

                new TextData(){ Text = "Text classification can be used for a " +
                    "wide variety of tasks" },

                new TextData(){ Text = "such as sentiment analysis, topic " +
                    "detection, intent identification etc." },
            };

            // Convert training data to IDataView.
            var dataview = mlContext.Data.LoadFromEnumerable(samples);

            // A pipeline for converting text into numeric features.
            // The following call to 'FeaturizeText' instantiates 
            // 'TextFeaturizingEstimator' with default parameters.
            // The default settings for the TextFeaturizingEstimator are
            //      * StopWordsRemover: None
            //      * CaseMode: Lowercase
            //      * OutputTokensColumnName: None
            //      * KeepDiacritics: false, KeepPunctuations: true, KeepNumbers:
            //          true
            //      * WordFeatureExtractor: NgramLength = 1
            //      * CharFeatureExtractor: NgramLength = 3, UseAllLengths = false
            // The length of the output feature vector depends on these settings.
            var textPipeline = mlContext.Transforms.Text.FeaturizeText("Features",
                "Text");

            // Fit to data.
            var textTransformer = textPipeline.Fit(dataview);

            // Create the prediction engine to get the features extracted from the
            // text.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(textTransformer);

            // Convert the text into numeric features.
            var prediction = predictionEngine.Predict(samples[0]);

            // Print the length of the feature vector.
            Console.WriteLine($"Number of Features: {prediction.Features.Length}");

            // Print the first 10 feature values.
            Console.Write("Features: ");
            for (int i = 0; i < 10; i++)
                Console.Write($"{prediction.Features[i]:F4}  ");

            //  Expected output:
            //   Number of Features: 332
            //   Features: 0.0857  0.0857  0.0857  0.0857  0.0857  0.0857  0.0857  0.0857  0.0857  0.1715 ...
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public float[] Features { get; set; }
        }
    }
}

S’applique à

FeaturizeText(TransformsCatalog+TextTransforms, String, TextFeaturizingEstimator+Options, String[])

Créez une TextFeaturizingEstimatorcolonne de texte qui transforme une colonne de texte en vecteur exploitable de Single ce qui représente le nombre normalisé de n-grammes et de grammes de caractères.

public static Microsoft.ML.Transforms.Text.TextFeaturizingEstimator FeaturizeText (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, Microsoft.ML.Transforms.Text.TextFeaturizingEstimator.Options options, params string[] inputColumnNames);
static member FeaturizeText : Microsoft.ML.TransformsCatalog.TextTransforms * string * Microsoft.ML.Transforms.Text.TextFeaturizingEstimator.Options * string[] -> Microsoft.ML.Transforms.Text.TextFeaturizingEstimator
<Extension()>
Public Function FeaturizeText (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, options As TextFeaturizingEstimator.Options, ParamArray inputColumnNames As String()) As TextFeaturizingEstimator

Paramètres

catalog
TransformsCatalog.TextTransforms

Catalogue de transformation liée au texte.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnNames. Le type de données de cette colonne sera un vecteur de Single.

options
TextFeaturizingEstimator.Options

Options avancées pour l’algorithme.

inputColumnNames
String[]

Nom des colonnes à transformer. Si elle est définie sur null, la valeur du outputColumnName fichier sera utilisée comme source. Cet estimateur fonctionne sur les données de texte et peut transformer plusieurs colonnes à la fois, ce qui génère un vecteur comme Single caractéristiques résultantes pour toutes les colonnes.

Retours

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Transforms.Text;

namespace Samples.Dynamic
{
    public static class FeaturizeTextWithOptions
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create a small dataset as an IEnumerable.
            var samples = new List<TextData>()
            {
                new TextData(){ Text = "ML.NET's FeaturizeText API uses a " +
                "composition of several basic transforms to convert text into " +
                "numeric features." },

                new TextData(){ Text = "This API can be used as a featurizer to " +
                "perform text classification." },

                new TextData(){ Text = "There are a number of approaches to text " +
                "classification." },

                new TextData(){ Text = "One of the simplest and most common " +
                "approaches is called “Bag of Words”." },

                new TextData(){ Text = "Text classification can be used for a " +
                "wide variety of tasks" },

                new TextData(){ Text = "such as sentiment analysis, topic " +
                "detection, intent identification etc." },
            };

            // Convert training data to IDataView.
            var dataview = mlContext.Data.LoadFromEnumerable(samples);

            // A pipeline for converting text into numeric features.
            // The following call to 'FeaturizeText' instantiates
            // 'TextFeaturizingEstimator' with given parameters. The length of the
            // output feature vector depends on these settings.
            var options = new TextFeaturizingEstimator.Options()
            {
                // Also output tokenized words
                OutputTokensColumnName = "OutputTokens",
                CaseMode = TextNormalizingEstimator.CaseMode.Lower,
                // Use ML.NET's built-in stop word remover
                StopWordsRemoverOptions = new StopWordsRemovingEstimator.Options()
                {
                    Language = TextFeaturizingEstimator.Language.English
                },

                WordFeatureExtractor = new WordBagEstimator.Options()
                {
                    NgramLength
                    = 2,
                    UseAllLengths = true
                },

                CharFeatureExtractor = new WordBagEstimator.Options()
                {
                    NgramLength
                    = 3,
                    UseAllLengths = false
                },
            };
            var textPipeline = mlContext.Transforms.Text.FeaturizeText("Features",
                options, "Text");

            // Fit to data.
            var textTransformer = textPipeline.Fit(dataview);

            // Create the prediction engine to get the features extracted from the
            // text.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(textTransformer);

            // Convert the text into numeric features.
            var prediction = predictionEngine.Predict(samples[0]);

            // Print the length of the feature vector.
            Console.WriteLine($"Number of Features: {prediction.Features.Length}");

            // Print feature values and tokens.
            Console.Write("Features: ");
            for (int i = 0; i < 10; i++)
                Console.Write($"{prediction.Features[i]:F4}  ");

            Console.WriteLine("\nTokens: " + string.Join(",", prediction
                .OutputTokens));

            //  Expected output:
            //   Number of Features: 282
            //   Features: 0.0941  0.0941  0.0941  0.0941  0.0941  0.0941  0.0941  0.0941  0.0941  0.1881 ...
            //   Tokens: ml.net's,featurizetext,api,uses,composition,basic,transforms,convert,text,numeric,features.
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public float[] Features { get; set; }
            public string[] OutputTokens { get; set; }
        }
    }
}

Remarques

Cette transformation peut fonctionner sur plusieurs colonnes.

S’applique à