Partager via


TextCatalog.LatentDirichletAllocation Méthode

Définition

Créez un LatentDirichletAllocationEstimator, qui utilise LightLDA pour transformer du texte (représenté sous forme de vecteur de floats) en un vecteur indiquant Single la similitude du texte avec chaque rubrique identifiée.

public static Microsoft.ML.Transforms.Text.LatentDirichletAllocationEstimator LatentDirichletAllocation (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, int numberOfTopics = 100, float alphaSum = 100, float beta = 0.01, int samplingStepCount = 4, int maximumNumberOfIterations = 200, int likelihoodInterval = 5, int numberOfThreads = 0, int maximumTokenCountPerDocument = 512, int numberOfSummaryTermsPerTopic = 10, int numberOfBurninIterations = 10, bool resetRandomGenerator = false);
static member LatentDirichletAllocation : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * int * single * single * int * int * int * int * int * int * int * bool -> Microsoft.ML.Transforms.Text.LatentDirichletAllocationEstimator
<Extension()>
Public Function LatentDirichletAllocation (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional numberOfTopics As Integer = 100, Optional alphaSum As Single = 100, Optional beta As Single = 0.01, Optional samplingStepCount As Integer = 4, Optional maximumNumberOfIterations As Integer = 200, Optional likelihoodInterval As Integer = 5, Optional numberOfThreads As Integer = 0, Optional maximumTokenCountPerDocument As Integer = 512, Optional numberOfSummaryTermsPerTopic As Integer = 10, Optional numberOfBurninIterations As Integer = 10, Optional resetRandomGenerator As Boolean = false) As LatentDirichletAllocationEstimator

Paramètres

catalog
TransformsCatalog.TextTransforms

Catalogue de la transformation.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Cet estimateur génère un vecteur de Single.

inputColumnName
String

Nom de la colonne à transformer. Si elle est définie sur null, la valeur du outputColumnName fichier sera utilisée comme source. Cet estimateur fonctionne sur un vecteur de Single.

numberOfTopics
Int32

Nombre de rubriques.

alphaSum
Single

Dirichlet antérieur sur les vecteurs de rubrique de document.

beta
Single

Dirichlet antérieur aux vecteurs vocab-topic.

samplingStepCount
Int32

Nombre d’étapes de hasting de Métropole.

maximumNumberOfIterations
Int32

Nombre d’itérations.

likelihoodInterval
Int32

Probabilité du journal de calcul sur un jeu de données local sur cet intervalle d’itération.

numberOfThreads
Int32

Nombre de threads d’entraînement. La valeur par défaut dépend du nombre de processeurs logiques.

maximumTokenCountPerDocument
Int32

Seuil du nombre maximal de jetons par document.

numberOfSummaryTermsPerTopic
Int32

Nombre de mots à résumer.

numberOfBurninIterations
Int32

Nombre d’itérations de brûlure.

resetRandomGenerator
Boolean

Réinitialisez le générateur de nombres aléatoires pour chaque document.

Retours

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class LatentDirichletAllocation
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create a small dataset as an IEnumerable.
            var samples = new List<TextData>()
            {
                new TextData(){ Text = "ML.NET's LatentDirichletAllocation API " +
                "computes topic models." },

                new TextData(){ Text = "ML.NET's LatentDirichletAllocation API " +
                "is the best for topic models." },

                new TextData(){ Text = "I like to eat broccoli and bananas." },
                new TextData(){ Text = "I eat bananas for breakfast." },
                new TextData(){ Text = "This car is expensive compared to last " +
                "week's price." },

                new TextData(){ Text = "This car was $X last week." },
            };

            // Convert training data to IDataView.
            var dataview = mlContext.Data.LoadFromEnumerable(samples);

            // A pipeline for featurizing the text/string using 
            // LatentDirichletAllocation API. o be more accurate in computing the
            // LDA features, the pipeline first normalizes text and removes stop
            // words before passing tokens (the individual words, lower cased, with
            // common words removed) to LatentDirichletAllocation.
            var pipeline = mlContext.Transforms.Text.NormalizeText("NormalizedText",
                "Text")
                .Append(mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
                    "NormalizedText"))
                .Append(mlContext.Transforms.Text.RemoveDefaultStopWords("Tokens"))
                .Append(mlContext.Transforms.Conversion.MapValueToKey("Tokens"))
                .Append(mlContext.Transforms.Text.ProduceNgrams("Tokens"))
                .Append(mlContext.Transforms.Text.LatentDirichletAllocation(
                    "Features", "Tokens", numberOfTopics: 3));

            // Fit to data.
            var transformer = pipeline.Fit(dataview);

            // Create the prediction engine to get the LDA features extracted from
            // the text.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(transformer);

            // Convert the sample text into LDA features and print it.
            PrintLdaFeatures(predictionEngine.Predict(samples[0]));
            PrintLdaFeatures(predictionEngine.Predict(samples[1]));

            // Features obtained post-transformation.
            // For LatentDirichletAllocation, we had specified numTopic:3. Hence
            // each prediction has been featurized as a vector of floats with length
            // 3.

            //  Topic1  Topic2  Topic3
            //  0.6364  0.2727  0.0909
            //  0.5455  0.1818  0.2727
        }

        private static void PrintLdaFeatures(TransformedTextData prediction)
        {
            for (int i = 0; i < prediction.Features.Length; i++)
                Console.Write($"{prediction.Features[i]:F4}  ");
            Console.WriteLine();
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public float[] Features { get; set; }
        }
    }
}

S’applique à