Partager via


TimeSeriesCatalog.ForecastBySsa Méthode

Définition

Modèle SSA (Singular Spectrum Analysis) pour la prévision de séries chronologiques univariées. Pour plus d’informations sur le modèle, reportez-vous à http://arxiv.org/pdf/1206.6910.pdf.

public static Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator ForecastBySsa (this Microsoft.ML.ForecastingCatalog catalog, string outputColumnName, string inputColumnName, int windowSize, int seriesLength, int trainSize, int horizon, bool isAdaptive = false, float discountFactor = 1, Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod rankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, int? rank = default, int? maxRank = default, bool shouldStabilize = true, bool shouldMaintainInfo = false, Microsoft.ML.Transforms.TimeSeries.GrowthRatio? maxGrowth = default, string confidenceLowerBoundColumn = default, string confidenceUpperBoundColumn = default, float confidenceLevel = 0.95, bool variableHorizon = false);
static member ForecastBySsa : Microsoft.ML.ForecastingCatalog * string * string * int * int * int * int * bool * single * Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod * Nullable<int> * Nullable<int> * bool * bool * Nullable<Microsoft.ML.Transforms.TimeSeries.GrowthRatio> * string * string * single * bool -> Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator
<Extension()>
Public Function ForecastBySsa (catalog As ForecastingCatalog, outputColumnName As String, inputColumnName As String, windowSize As Integer, seriesLength As Integer, trainSize As Integer, horizon As Integer, Optional isAdaptive As Boolean = false, Optional discountFactor As Single = 1, Optional rankSelectionMethod As RankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, Optional rank As Nullable(Of Integer) = Nothing, Optional maxRank As Nullable(Of Integer) = Nothing, Optional shouldStabilize As Boolean = true, Optional shouldMaintainInfo As Boolean = false, Optional maxGrowth As Nullable(Of GrowthRatio) = Nothing, Optional confidenceLowerBoundColumn As String = Nothing, Optional confidenceUpperBoundColumn As String = Nothing, Optional confidenceLevel As Single = 0.95, Optional variableHorizon As Boolean = false) As SsaForecastingEstimator

Paramètres

catalog
ForecastingCatalog

Catalogue.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName.

inputColumnName
String

Nom de la colonne à transformer. Si la valeur est définie nullsur , la valeur de outputColumnName sera utilisée comme source. Le vecteur contient Alert, Raw Score et P-Value comme trois premières valeurs.

windowSize
Int32

Longueur de la fenêtre sur la série pour la création de la matrice de trajectoire (paramètre L).

seriesLength
Int32

Longueur de série conservée dans la mémoire tampon pour la modélisation (paramètre N).

trainSize
Int32

Longueur de série depuis le début utilisée pour l’entraînement.

horizon
Int32

Nombre de valeurs à prévoir.

isAdaptive
Boolean

Indicateur déterminant si le modèle est adaptatif.

discountFactor
Single

Facteur de remise dans [0,1] utilisé pour les mises à jour en ligne.

rankSelectionMethod
RankSelectionMethod

Méthode de sélection de classement.

rank
Nullable<Int32>

Rang souhaité du sous-espace utilisé pour la projection SSA (paramètre r). Ce paramètre doit se trouver dans la plage dans [1, windowSize]. Si la valeur est null, le classement est automatiquement déterminé en fonction de la réduction des erreurs de prédiction.

maxRank
Nullable<Int32>

Classement maximal pris en compte pendant le processus de sélection de classement. S’il n’est pas fourni (c’est-à-dire défini sur null), il est défini sur windowSize - 1.

shouldStabilize
Boolean

Indicateur déterminant si le modèle doit être stabilisé.

shouldMaintainInfo
Boolean

Indicateur déterminant si les méta-informations du modèle doivent être conservées.

maxGrowth
Nullable<GrowthRatio>

Croissance maximale sur la tendance exponentielle.

confidenceLowerBoundColumn
String

Nom de la colonne de limite inférieure de l’intervalle de confiance. S’ils ne sont pas spécifiés, les intervalles de confiance ne sont pas calculés.

confidenceUpperBoundColumn
String

Nom de la colonne de limite supérieure de l’intervalle de confiance. S’ils ne sont pas spécifiés, les intervalles de confiance ne sont pas calculés.

confidenceLevel
Single

Niveau de confiance pour la prévision.

variableHorizon
Boolean

Définissez cette valeur sur true si l’horizon change après l’entraînement (au moment de la prédiction).

Retours

Exemples

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class Forecasting
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot) and then does forecasting.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern.
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup arguments.
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ForecastResult.Forecast);

            // Instantiate the forecasting model.
            var model = ml.Forecasting.ForecastBySsa(outputColumnName,
                inputColumnName, 5, 11, data.Count, 5);

            // Train.
            var transformer = model.Fit(dataView);

            // Forecast next five values.
            var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
                ForecastResult>(ml);

            var forecast = forecastEngine.Predict();

            Console.WriteLine($"Forecasted values:");
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // Forecasted values:
            // [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]

            // Update with new observations.
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));

            // Checkpoint.
            forecastEngine.CheckPoint(ml, "model.zip");

            // Load the checkpointed model from disk.
            // Load the model.
            ITransformer modelCopy;
            using (var file = File.OpenRead("model.zip"))
                modelCopy = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
                TimeSeriesData, ForecastResult>(ml);

            // Forecast with the checkpointed model loaded from disk.
            forecast = forecastEngineCopy.Predict();
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

            // Forecast with the original model(that was checkpointed to disk).
            forecast = forecastEngine.Predict();
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

        }

        class ForecastResult
        {
            public float[] Forecast { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class ForecastingWithConfidenceInternal
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot) and then does forecasting.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern.
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup arguments.
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ForecastResult.Forecast);

            // Instantiate the forecasting model.
            var model = ml.Forecasting.ForecastBySsa(outputColumnName,
                inputColumnName, 5, 11, data.Count, 5,
                confidenceLevel: 0.95f,
                confidenceLowerBoundColumn: "ConfidenceLowerBound",
                confidenceUpperBoundColumn: "ConfidenceUpperBound");

            // Train.
            var transformer = model.Fit(dataView);

            // Forecast next five values.
            var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
                ForecastResult>(ml);

            var forecast = forecastEngine.Predict();

            PrintForecastValuesAndIntervals(forecast.Forecast, forecast
                .ConfidenceLowerBound, forecast.ConfidenceUpperBound);
            // Forecasted values:
            // [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]
            // Confidence intervals:
            // [0.3451088 - 3.609343] [-0.7967533 - 2.83774] [-0.058467 - 3.579552] [1.61505 - 5.259968] [2.349299 - 6.183623]

            // Update with new observations.
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));

            // Checkpoint.
            forecastEngine.CheckPoint(ml, "model.zip");

            // Load the checkpointed model from disk.
            // Load the model.
            ITransformer modelCopy;
            using (var file = File.OpenRead("model.zip"))
                modelCopy = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
                TimeSeriesData, ForecastResult>(ml);

            // Forecast with the checkpointed model loaded from disk.
            forecast = forecastEngineCopy.Predict();
            PrintForecastValuesAndIntervals(forecast.Forecast, forecast
                .ConfidenceLowerBound, forecast.ConfidenceUpperBound);

            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
            // Confidence intervals:
            // [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]

            // Forecast with the original model(that was checkpointed to disk).
            forecast = forecastEngine.Predict();
            PrintForecastValuesAndIntervals(forecast.Forecast,
                forecast.ConfidenceLowerBound, forecast.ConfidenceUpperBound);

            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
            // Confidence intervals:
            // [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]
        }

        static void PrintForecastValuesAndIntervals(float[] forecast, float[]
            confidenceIntervalLowerBounds, float[] confidenceIntervalUpperBounds)
        {
            Console.WriteLine($"Forecasted values:");
            Console.WriteLine("[{0}]", string.Join(", ", forecast));
            Console.WriteLine($"Confidence intervals:");
            for (int index = 0; index < forecast.Length; index++)
                Console.Write($"[{confidenceIntervalLowerBounds[index]} -" +
                    $" {confidenceIntervalUpperBounds[index]}] ");
            Console.WriteLine();
        }

        class ForecastResult
        {
            public float[] Forecast { get; set; }
            public float[] ConfidenceLowerBound { get; set; }
            public float[] ConfidenceUpperBound { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

S’applique à