Partager via


NaiveBayesMulticlassTrainer Classe

Définition

Pour IEstimator<TTransformer> entraîner un modèle Naive Bayes multiclasse qui prend en charge les valeurs de fonctionnalités binaires.

public sealed class NaiveBayesMulticlassTrainer : Microsoft.ML.Trainers.TrainerEstimatorBase<Microsoft.ML.Data.MulticlassPredictionTransformer<Microsoft.ML.Trainers.NaiveBayesMulticlassModelParameters>,Microsoft.ML.Trainers.NaiveBayesMulticlassModelParameters>
type NaiveBayesMulticlassTrainer = class
    inherit TrainerEstimatorBase<MulticlassPredictionTransformer<NaiveBayesMulticlassModelParameters>, NaiveBayesMulticlassModelParameters>
Public NotInheritable Class NaiveBayesMulticlassTrainer
Inherits TrainerEstimatorBase(Of MulticlassPredictionTransformer(Of NaiveBayesMulticlassModelParameters), NaiveBayesMulticlassModelParameters)
Héritage

Remarques

Pour créer ce formateur, utilisez NaiveBayes.

Colonnes d’entrée et de sortie

Les données de colonne d’étiquette d’entrée doivent être de type clé et la colonne de caractéristique doit être un vecteur de taille connue de Single.

Ce formateur génère les colonnes suivantes :

Nom de colonne de sortie Type de colonne Description
Score Vecteur de Single Les scores de toutes les classes. Une valeur supérieure signifie une plus forte probabilité d’appartenir à la classe associée. Si l’i-ème élément a la plus grande valeur, l’index de l’étiquette prédite est i. Notez que i est l’index de base zéro.
PredictedLabel type de clé Index de l’étiquette prédite. Si sa valeur est i, l’étiquette réelle est la i-ème catégorie dans le type d’étiquette d’entrée avec une valeur de clé.

Caractéristiques de l’entraîneur

Tâche d’apprentissage automatique Classification multiclasse
La normalisation est-elle requise ? Oui
La mise en cache est-elle requise ? Non
NuGet requis en plus de Microsoft.ML Aucun
Exportable vers ONNX Oui

Détails de l’algorithme d’apprentissage

Naive Bayes est un classifieur probabilistique qui peut être utilisé pour des problèmes multiclasses. À l’aide du théorème de Bayes, la probabilité conditionnelle d’un échantillon appartenant à une classe peut être calculée en fonction du nombre d’échantillons pour chaque groupe de combinaisons de caractéristiques. Toutefois, naive Bayes Classifier est réalisable uniquement si le nombre de fonctionnalités et les valeurs que chaque fonctionnalité peut prendre est relativement petite. Elle suppose l’indépendance entre la présence de caractéristiques dans une classe, même si elles peuvent dépendre les unes des autres. Ce formateur multiclasse accepte les valeurs de caractéristiques « binaires » de type float : les valeurs de caractéristiques supérieures à zéro sont traitées comme true et les valeurs de caractéristiques inférieures ou égales à 0 sont traitées comme false.

Consultez la section Voir également pour obtenir des liens vers des exemples d’utilisation.

Champs

FeatureColumn

Colonne de caractéristique attendue par l’entraîneur.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

Colonne d’étiquette attendue par le formateur. Peut être null, ce qui indique que l’étiquette n’est pas utilisée pour l’entraînement.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Colonne de poids attendue par l’entraîneur. Peut être null, ce qui indique que le poids n’est pas utilisé pour l’entraînement.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)

Propriétés

Info

Informations auxiliaires sur le formateur en termes de capacités et de exigences.

Méthodes

Fit(IDataView)

Entraîne et retourne un ITransformer.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Pour IEstimator<TTransformer> entraîner un modèle Naive Bayes multiclasse qui prend en charge les valeurs de fonctionnalités binaires.

(Hérité de TrainerEstimatorBase<TTransformer,TModel>)

Méthodes d’extension

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Ajoutez un « point de contrôle de mise en cache » à la chaîne d’estimateur. Cela garantit que les estimateurs en aval seront entraînés par rapport aux données mises en cache. Il est utile d’avoir un point de contrôle de mise en cache avant les formateurs qui prennent plusieurs passes de données.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Étant donné un estimateur, retournez un objet de création de package de package qui appellera un délégué une fois Fit(IDataView) appelé. Il est souvent important pour un estimateur de retourner des informations sur ce qui a été adapté, c’est pourquoi la Fit(IDataView) méthode retourne un objet spécifiquement typé, plutôt que simplement un général ITransformer. Toutefois, en même temps, IEstimator<TTransformer> sont souvent formés en pipelines avec de nombreux objets. Nous pouvons donc avoir besoin de créer une chaîne d’estimateurs via EstimatorChain<TLastTransformer> laquelle l’estimateur pour lequel nous voulons obtenir le transformateur est enterré quelque part dans cette chaîne. Pour ce scénario, nous pouvons par le biais de cette méthode attacher un délégué qui sera appelé une fois l’ajustement appelé.

S’applique à

Voir aussi