PriorTrainer Classe
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Pour IEstimator<TTransformer> prédire une cible à l’aide d’un modèle de classification binaire.
public sealed class PriorTrainer : Microsoft.ML.IEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>>, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>,Microsoft.ML.Trainers.PriorModelParameters>
type PriorTrainer = class
interface ITrainerEstimator<BinaryPredictionTransformer<PriorModelParameters>, PriorModelParameters>
interface IEstimator<BinaryPredictionTransformer<PriorModelParameters>>
Public NotInheritable Class PriorTrainer
Implements IEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters)), ITrainerEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters), PriorModelParameters)
- Héritage
-
PriorTrainer
- Implémente
Remarques
Pour créer ce formateur, utilisez Prior
Colonnes d’entrée et de sortie
Les données de la colonne d’étiquettes d’entrée doivent être Boolean. Les données de colonne des caractéristiques d’entrée doivent être un vecteur de taille connue de Single.
Ce formateur génère les colonnes suivantes :
Nom de colonne de sortie | Type de colonne | Description | |
---|---|---|---|
Score |
Single | Score non lié calculé par le modèle. | |
PredictedLabel |
Boolean | Étiquette prédite, en fonction du signe du score. Un score négatif est mappé à false , tandis qu’un score positif est mappé à true . |
|
Probability |
Single | La probabilité calculée en calibrant le score d’avoir true comme étiquette. La valeur de probabilité est dans la plage [0, 1]. |
Caractéristiques de l’entraîneur
Tâche d’apprentissage automatique | Classification binaire |
La normalisation est-elle requise ? | Non |
La mise en cache est-elle requise ? | Non |
NuGet requis en plus de Microsoft.ML | Aucun |
Exportable vers ONNX | Oui |
Détails de l’algorithme d’apprentissage
Découvrez la distribution précédente pour les étiquettes et sorties de classe 0/1.
Consultez la section Voir également pour obtenir des liens vers des exemples d’utilisation.
Propriétés
Info |
Informations auxiliaires sur le formateur en termes de capacités et de exigences. |
Méthodes
Fit(IDataView) |
Entraîne et retourne un BinaryPredictionTransformer<TModel>. |
GetOutputSchema(SchemaShape) |
Retourne le SchemaShape schéma qui sera produit par le transformateur. Utilisé pour la propagation et la vérification du schéma dans un pipeline. |
Méthodes d’extension
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Ajoutez un « point de contrôle de mise en cache » à la chaîne d’estimateur. Cela garantit que les estimateurs en aval seront entraînés par rapport aux données mises en cache. Il est utile d’avoir un point de contrôle de mise en cache avant les formateurs qui prennent plusieurs passes de données. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Étant donné un estimateur, retournez un objet de création de package de package qui appellera un délégué une fois Fit(IDataView) appelé. Il est souvent important pour un estimateur de retourner des informations sur ce qui a été adapté, c’est pourquoi la Fit(IDataView) méthode retourne un objet spécifiquement typé, plutôt que simplement un général ITransformer. Toutefois, en même temps, IEstimator<TTransformer> sont souvent formés en pipelines avec de nombreux objets. Nous pouvons donc avoir besoin de créer une chaîne d’estimateurs via EstimatorChain<TLastTransformer> laquelle l’estimateur pour lequel nous voulons obtenir le transformateur est enterré quelque part dans cette chaîne. Pour ce scénario, nous pouvons par le biais de cette méthode attacher un délégué qui sera appelé une fois l’ajustement appelé. |