Notes
L’accès à cette page nécessite une autorisation. Vous pouvez essayer de vous connecter ou de modifier des répertoires.
L’accès à cette page nécessite une autorisation. Vous pouvez essayer de modifier des répertoires.
Important
Cette fonctionnalité est en préversion.
Ce document montre des exemples d’utilisation d’Azure OpenAI dans Fabric à l’aide de l’API REST.
Initialisation
from synapse.ml.mlflow import get_mlflow_env_config
from trident_token_library_wrapper import PyTridentTokenLibrary
mlflow_env_configs = get_mlflow_env_config()
mwc_token = PyTridentTokenLibrary.get_mwc_token(mlflow_env_configs.workspace_id, mlflow_env_configs.artifact_id, 2)
auth_headers = {
"Authorization" : "MwcToken {}".format(mwc_token)
}
Conversation
GPT-4o et GPT-4o-mini sont des modèles de langage optimisés pour les interfaces conversationnelles.
import requests
def print_chat_result(messages, response_code, response):
print("==========================================================================================")
print("| OpenAI Input |")
for msg in messages:
if msg["role"] == "system":
print("[System] ", msg["content"])
elif msg["role"] == "user":
print("Q: ", msg["content"])
else:
print("A: ", msg["content"])
print("------------------------------------------------------------------------------------------")
print("| Response Status |", response_code)
print("------------------------------------------------------------------------------------------")
print("| OpenAI Output |")
if response.status_code == 200:
print(response.json()["choices"][0]["message"]["content"])
else:
print(response.content)
print("==========================================================================================")
deployment_name = "gpt-4o" # deployment_id could be one of {gpt-4o or gpt-4o-mini}
openai_url = mlflow_env_configs.workload_endpoint + f"cognitive/openai/openai/deployments/{deployment_name}/chat/completions?api-version=2025-04-01-preview"
payload = {
"messages": [
{"role": "system", "content": "You are an AI assistant that helps people find information."},
{"role": "user", "content": "Does Azure OpenAI support customer managed keys?"}
]
}
response = requests.post(openai_url, headers=auth_headers, json=payload)
print_chat_result(payload["messages"], response.status_code, response)
Sortie
==========================================================================================
| OpenAI Input |
[System] You are an AI assistant that helps people find information.
Q: Does Azure OpenAI support customer managed keys?
------------------------------------------------------------------------------------------
| Response Status | 200
------------------------------------------------------------------------------------------
| OpenAI Output |
As of my last training cut-off in October 2023, Azure OpenAI Service did not natively support customer-managed keys (CMK) for encryption of data at rest. Data within Azure OpenAI is typically encrypted using Microsoft-managed keys.
However, you should verify this information on the official Azure documentation or by contacting Microsoft support, as cloud service features and capabilities are frequently updated.
==========================================================================================
Incorporations
Une incorporation est un format spécial de représentation des données que les modèles et les algorithmes Machine Learning peuvent facilement utiliser. Il contient une signification sémantique d’un texte riche en informations, représenté par un vecteur de nombres à virgule flottante. La distance entre deux incorporations dans l’espace vectoriel est liée à la similarité sémantique entre deux entrées d’origine. Par exemple, si deux textes sont similaires, leurs représentations vectorielles doivent également l’être.
Pour accéder aux points de terminaison d’incorporations Azure OpenAI dans Fabric, vous pouvez envoyer une demande d’API au format suivant :
POST <url_prefix>/openai/deployments/<deployment_name>/embeddings?api-version=2024-02-01
deployment_name
est peut-être text-embedding-ada-002
.
import requests
def print_embedding_result(prompts, response_code, response):
print("==========================================================================================")
print("| OpenAI Input |\n\t" + "\n\t".join(prompts))
print("------------------------------------------------------------------------------------------")
print("| Response Status |", response_code)
print("------------------------------------------------------------------------------------------")
print("| OpenAI Output |")
if response_code == 200:
for data in response.json()['data']:
print("\t[" + ", ".join([f"{n:.8f}" for n in data["embedding"][:10]]) + ", ... ]")
else:
print(response.content)
print("==========================================================================================")
deployment_name = "text-embedding-ada-002"
openai_url = mlflow_env_configs.workload_endpoint + f"cognitive/openai/openai/deployments/{deployment_name}/embeddings?api-version=2025-04-01-preview"
payload = {
"input": [
"empty prompt, need to fill in the content before the request",
"Once upon a time"
]
}
response = requests.post(openai_url, headers=auth_headers, json=payload)
print_embedding_result(payload["input"], response.status_code, response)
Sortie:
==========================================================================================
| OpenAI Input |
empty prompt, need to fill in the content before the request
Once upon a time
------------------------------------------------------------------------------------------
| Response Status | 200
------------------------------------------------------------------------------------------
| OpenAI Output |
[-0.00258819, -0.00449802, -0.01700411, 0.00405622, -0.03064079, 0.01899395, -0.01295485, -0.01426286, -0.03512142, -0.01831212, ... ]
[0.02129045, -0.02013996, -0.00462094, -0.01146069, -0.01123944, 0.00199124, 0.00228992, -0.01370478, 0.00855917, -0.01470356, ... ]
==========================================================================================
Contenu connexe
- Utiliser l’Analyse de texte prédéfinie dans Fabric avec l’API REST
- Utiliser l’Analyse de texte prédéfinie dans Fabric avec SynapseML
- Utiliser Azure AI Traducteur prédéfini dans Fabric avec l’API REST
- Utiliser Azure AI Traducteur prédéfini dans Fabric avec SynapseML
- Utiliser Azure OpenAI prédéfini dans Fabric avec le Kit de développement logiciel (SDK) Python
- Utiliser Azure OpenAI prédéfini dans Fabric avec SynapseML