Partager via


Comment former des modèles avec PyTorch dans Microsoft Fabric

PyTorch est un framework d'apprentissage automatique basé sur la bibliothèque Torch. Il est fréquemment utilisé pour des applications telles que la vision par ordinateur et le traitement du langage naturel. Dans cet article, nous passons en revue un exemple de la façon dont vous entraînez et suivez les itérations de votre modèle PyTorch.

Installer PyTorch

Pour démarrer avec PyTorch, vous devez vous assurer qu'il est installé dans votre ordinateur portable. Vous pouvez installer ou mettre à niveau la version de PyTorch sur votre environnement à l'aide de la commande suivante :

%pip install torch

Configurer l'expérience d'apprentissage automatique

Ensuite, vous créez une expérience d'apprentissage automatique à l'aide de l'API MLFLow. L'API MLflow set_experiment() crée une nouvelle expérience d'apprentissage automatique si elle n'existe pas déjà.

import mlflow

mlflow.set_experiment("sample-pytorch")

Former et évaluer un modèle Pytorch

Une fois l'expérience créée, le code ci-dessous charge l'ensemble de données MNIST, génère nos ensembles de données de test et d'entraînement et crée une fonction de formation.

import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.optim as optim


## load mnist dataset
root = "/tmp/mnist"
if not os.path.exists(root):
    os.mkdir(root)

trans = transforms.Compose(
    [transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]
)
# if not exist, download mnist dataset
train_set = dset.MNIST(root=root, train=True, transform=trans, download=True)
test_set = dset.MNIST(root=root, train=False, transform=trans, download=True)

batch_size = 100

train_loader = torch.utils.data.DataLoader(
    dataset=train_set, batch_size=batch_size, shuffle=True
)
test_loader = torch.utils.data.DataLoader(
    dataset=test_set, batch_size=batch_size, shuffle=False
) 

print("==>>> total trainning batch number: {}".format(len(train_loader)))
print("==>>> total testing batch number: {}".format(len(test_loader)))

## network

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x): 
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4 * 4 * 50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

    def name(self):
        return "LeNet"

## training
model = LeNet()

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

criterion = nn.CrossEntropyLoss()

for epoch in range(1):
    # trainning
    ave_loss = 0
    for batch_idx, (x, target) in enumerate(train_loader):
        optimizer.zero_grad()
        x, target = Variable(x), Variable(target)
        out = model(x)
        loss = criterion(out, target)
        ave_loss = (ave_loss * batch_idx + loss.item()) / (batch_idx + 1)
        loss.backward()
        optimizer.step()
        if (batch_idx + 1) % 100 == 0 or (batch_idx + 1) == len(train_loader):
            print(
                "==>>> epoch: {}, batch index: {}, train loss: {:.6f}".format(
                    epoch, batch_idx + 1, ave_loss
                )
            )
    # testing
    correct_cnt, total_cnt, ave_loss = 0, 0, 0
    for batch_idx, (x, target) in enumerate(test_loader):
        x, target = Variable(x, volatile=True), Variable(target, volatile=True)
        out = model(x)
        loss = criterion(out, target)
        _, pred_label = torch.max(out.data, 1)
        total_cnt += x.data.size()[0]
        correct_cnt += (pred_label == target.data).sum()
        ave_loss = (ave_loss * batch_idx + loss.item()) / (batch_idx + 1)

        if (batch_idx + 1) % 100 == 0 or (batch_idx + 1) == len(test_loader):
            print(
                "==>>> epoch: {}, batch index: {}, test loss: {:.6f}, acc: {:.3f}".format(
                    epoch, batch_idx + 1, ave_loss, correct_cnt * 1.0 / total_cnt
                )
            )

torch.save(model.state_dict(), model.name())

Modèle de journal avec MLflow

Maintenant, vous démarrez une exécution MLflow et suivez les résultats dans notre expérience d'apprentissage automatique.

with mlflow.start_run() as run:
    print("log pytorch model:")
    mlflow.pytorch.log_model(
        model, "pytorch-model", registered_model_name="sample-pytorch"
    )

    model_uri = "runs:/{}/pytorch-model".format(run.info.run_id)
    print("Model saved in run %s" % run.info.run_id)
    print(f"Model URI: {model_uri}")

Le code ci-dessus crée une exécution avec les paramètres spécifiés et enregistre l'exécution dans l'expérience sample-pytorch. Cet extrait crée un nouveau modèle appelé sample-pytorch.

Charger et évaluer le modèle

Une fois le modèle enregistré, il peut également être chargé pour l'inférence.

# Inference with loading the logged model
loaded_model = mlflow.pytorch.load_model(model_uri)
print(type(loaded_model))

correct_cnt, total_cnt, ave_loss = 0, 0, 0
for batch_idx, (x, target) in enumerate(test_loader):
    x, target = Variable(x, volatile=True), Variable(target, volatile=True)
    out = loaded_model(x)
    loss = criterion(out, target)
    _, pred_label = torch.max(out.data, 1)
    total_cnt += x.data.size()[0]
    correct_cnt += (pred_label == target.data).sum()
    ave_loss = (ave_loss * batch_idx + loss.item()) / (batch_idx + 1)

    if (batch_idx + 1) % 100 == 0 or (batch_idx + 1) == len(test_loader):
        print(
            "==>>> epoch: {}, batch index: {}, test loss: {:.6f}, acc: {:.3f}".format(
                epoch, batch_idx + 1, ave_loss, correct_cnt * 1.0 / total_cnt
            )
        )