Partager via


Traiter des données à la périphérie avec des pipelines de processeur de données

Important

Opérations Azure IoT (préversion) – activé parc Azure Arc est actuellement en PRÉVERSION. Vous ne devez pas utiliser ce logiciel en préversion dans des environnements de production.

Vous devrez déployer une nouvelle installation d’Azure IoT Operations lorsqu’une version en disponibilité générale est mise à disposition, vous ne pourrez pas mettre à niveau une installation en préversion.

Pour connaître les conditions juridiques qui s’appliquent aux fonctionnalités Azure en version bêta, en préversion ou plus généralement non encore en disponibilité générale, consultez l’Avenant aux conditions d’utilisation des préversions de Microsoft Azure.

Les ressources industrielles génèrent des données dans de nombreux formats différents et utilisent différents protocoles de communication. Cette diversité de sources de données, associée à différents schémas et mesures unitaires, rend difficile l’utilisation et l’analyse efficace des données industrielles brutes. En outre, pour des raisons de conformité, de sécurité et de performances, vous ne pouvez pas charger tous les jeux de données dans le cloud.

Le traitement de ces données nécessite traditionnellement une engineering données coûteuse, complexe et fastidieuse. Le processeur de données est un service configurable de traitement des données qui peut gérer les complexités et la diversité des données industrielles. Utilisez le processeur de données pour rendre les données provenant de sources disparates plus compréhensibles, utilisables et précieuses.

Qu’est-ce que le processeur de données ?

Le processeur de données est un composant facultatif d’Azure IoT Operations Preview. Le processeur de données vous permet d’agréger, d’enrichir, de normaliser et de filtrer les données de vos appareils. Le processeur de données est un moteur de traitement des données basé sur un pipeline qui vous permet de traiter les données à la périphérie avant de les envoyer aux autres services à la périphérie ou dans le cloud :

Diagramme de l’architecture Des opérations Azure IoT qui met en évidence le composant du processeur de données.

Le processeur de données ingère des données en continu en temps réel à partir de sources telles que des serveurs OPC UA, des historiens et d’autres systèmes industriels. Le service normalise ces données en convertissant différents formats de données en format standardisé et structuré, ce qui facilite leur interrogation et leur analyse. Data Processor peut également contextualiser les données, les enrichir avec des données de référence ou des dernières valeurs connues (LKV) afin de fournir une vue complète de vos opérations industrielles.

La sortie du processeur de données est des données propres, enrichies et standardisées prêtes pour les applications en aval, telles que les outils de analytique et d’insights en temps réel. Data Processor réduit considérablement le temps nécessaire pour transformer les données brutes en insights exploitables.

Les principales fonctionnalités du processeur de données sont les suivantes :

  • Normalisation flexible des données pour convertir plusieurs formats de données en une structure standardisée.

  • Enrichissement des flux de données avec des données de référence ou des valeurs LKV pour améliorer le contexte et les insights.

  • Intégration de Microsoft Fabric pour simplifier l’analyse des données propres.

  • Possibilité de traiter les données de différentes sources et de les publier dans différentes destinations.

  • En tant que plateforme de traitement des données indépendante des données, le processeur de données peut ingérer des données dans n’importe quel format, traiter les données, puis les écrire dans une destination. Pour prendre en charge ces fonctionnalités, le processeur de données peut désérialiser et sérialiser différents formats. Par exemple, il peut effectuer une sérialisation en parquet afin d’écrire des fichiers dans Microsoft Fabric.

  • Stratégies de nouvelles tentatives automatiques et configurables pour gérer les erreurs temporaires pendant l’envoi de données à des destinations cloud.

Déployer le processeur de données

Par défaut, le processeur de données n’est pas inclus dans un déploiement Azure IoT Operations Preview. Si vous envisagez d’utiliser le processeur de données, vous devez l’inclure lorsque vous déployez Azure IoT Operations Preview . Vous ne pouvez pas l’ajouter ultérieurement. Pour déployer le processeur de données, utilisez l’argument --include-dp lorsque vous exécutez la commande az iot ops init . Pour plus d’informations, consultez Déployer Azure IoT Operations Preview sur un cluster Kubernetes avec Arc.

Qu’est-ce qu’un pipeline ?

Un pipeline de processeur de données a une source d’entrée dans laquelle il lit les données, une destination dans laquelle il écrit des données traitées et un nombre variable d’étapes intermédiaires pour traiter les données.

Diagramme montrant comment un pipeline est constitué à partir d’étapes.

Les index intermédiaires représentent les différentes fonctionnalités de traitement des données disponibles :

  • Vous pouvez ajouter autant d’index intermédiaires que nécessaire à un pipeline.
  • Vous pouvez ordonner les index intermédiaires d’un pipeline selon vos besoins. Vous pouvez réorganiser les index après avoir créé un pipeline.
  • Chaque index respecte une interface d’implémentation définie et un contrat de schéma d’entrée/de sortie.
  • Chaque index est indépendant des autres index du pipeline.
  • Tous les index fonctionnent dans l’étendue d’une partition. Les données ne sont pas partagées entre différentes partitions.
  • Les données passent d’une index au suivant uniquement.

Les pipelines de processeur de données peuvent utiliser les étapes suivantes :

Étape Description
Source : MQ Récupère les données d’un MQTT broker.
Source : point de terminaison HTTP Récupère les données d’un point de terminaison HTTP.
Source : SQL Récupère les données d’une base de données Microsoft SQL Server.
Source - InfluxDB Récupère les données d’une base de données InfluxDB.
Filter Filtre les données qui circulent dans l’index. Par exemple, filtrez n’importe quel message avec une température en dehors de la plage 50F-150F.
Transformer Normalise la structure des données. Par exemple, modifiez la structure de {"Name": "Temp", "value": 50} à {"temp": 50}.
LKV Stocke les valeurs de métriques sélectionnées dans un magasin LKV. Par exemple, stockez uniquement les mesures de température et d’humidité dans LKV et ignorez le reste. Un index suivant peut enrichir un message avec les données LKV stockées.
Enrichissement Enrichit les messages avec les données du magasin de données de référence. Par exemple, ajoutez un nom d’opérateur et un numéro de lot à partir du jeu de données d’opérations.
Regroupement Agrège les valeurs qui circulent dans l’index. Par exemple, la transmission des valeurs de température toutes les 100 millisecondes entraîne l’émission d’une métrique de température moyenne toutes les 30 secondes.
Appel Effectue un appel à un service HTTP ou gRPC externe. Par exemple, appelez une fonction Azure pour convertir un format de message personnalisé en JSON.
Destination : MQ Écrit vos données traitées, nettoyées et contextualisées dans une rubrique MQTT.
Destination : référence Écrit vos données traitées dans le magasin de références intégré. D’autres pipelines peuvent utiliser le magasin de références pour enrichir leurs messages.
Destination : gRPC Envoie vos données traitées, nettoyées et contextualisées à un point de terminaison gRPC.
Destination - HTTP Envoie vos données traitées, nettoyées et contextualisées à un point de terminaison HTTP.
Destination : lakehouse Fabric Envoie vos données traitées, nettoyées et contextualisées à un lakehouse Microsoft Fabric dans le cloud.
Destination : Azure Data Explorer Envoie vos données traitées, nettoyées et contextualisées à un point de terminaison Azure Data Explorer dans le cloud.

Étape suivante

Pour en savoir plus sur le processeur de données, consultez :