Partager via


Moniteurs

Les objets Monitor exposent la possibilité de synchroniser l'accès vers une zone de code en prenant et en libérant un verrou sur un objet particulier à l'aide des méthodes Monitor.Enter, Monitor.TryEnter et Monitor.Exit. Une fois que vous avez un verrou sur une zone de code, vous pouvez utiliser les méthodes Monitor.Wait, Monitor.Pulse et Monitor.PulseAll. Waitlibère le verrou si celui-ci est maintenu et attend une notification. Lorsque Wait reçoit la notification, elle retourne et obtient à nouveau le verrou. Pulse etPulseAll indiquent au thread suivant dans la file d'attente de continuer.

Les instructions SyncLock de Visual Basic et lock C# utilisent la méthode Monitor.Enter pour obtenir le verrou et la méthode Monitor.Exit pour le libérer. L'avantage d'utiliser des instructions de langage tient à ce que tous les éléments du bloc lock ou SyncLock sont inclus dans une instruction Try. L'instruction Try dispose d'un bloc Finally pour garantir que le verrou a été libéré.

Monitor verrouille des objets (c'est-à-dire des types référence), et non des types valeur. Il est possible de passer un type valeur à Enter et Exit, mais il est converti séparément pour chaque appel. Étant donné que chaque appel crée un objet séparé, Enter ne bloque jamais et le code qu'il est censé protéger n'est pas vraiment synchronisé. Comme l'objet passé à Exit est en plus différent de l'objet passé à Enter, Monitor lève SynchronizationLockException avec le message suivant : « La méthode de synchronisation de l'objet a été appelée à partir d'un bloc de code non synchronisé ». L'exemple de code suivant illustre ces problèmes.

Try
    Dim x As Integer = 1
    ' The call to Enter() creates a generic synchronizing object for the value
    ' of x each time the code is executed, so that Enter never blocks.
    Monitor.Enter(x)
    Try
        ' Code that needs to be protected by the monitor.
    Finally
        ' Always use Finally to ensure that you exit the Monitor.

        ' The call to Exit() will FAIL!!!
        ' The synchronizing object created for x in Exit() will be different
        ' than the object used in Enter(). SynchronizationLockException
        ' will be thrown.
        Monitor.Exit(x)
    End Try
Catch SyncEx As SynchronizationLockException
    Console.WriteLine("A SynchronizationLockException occurred. Message:")
    Console.WriteLine(SyncEx.Message)
End Try
try
{
    int x = 1;
    // The call to Enter() creates a generic synchronizing object for the value
    // of x each time the code is executed, so that Enter never blocks.
    Monitor.Enter(x);
    try
    {
        // Code that needs to be protected by the monitor.
    }
    finally
    {
        // Always use Finally to ensure that you exit the Monitor.

        // The call to Exit() will FAIL!!!
        // The synchronizing object created for x in Exit() will be different
        // than the object used in Enter(). SynchronizationLockException
        // will be thrown.
        Monitor.Exit(x);
    }
}
catch (SynchronizationLockException SyncEx)
{
    Console.WriteLine("A SynchronizationLockException occurred. Message:");
    Console.WriteLine(SyncEx.Message);
}
try
{
    int x = 1;
    // The call to Enter() creates a generic synchronizing object for the value
    // of x each time the code is executed, so that Enter never blocks.
    Monitor::Enter(x);
    try
    {
        // Code that needs to be protected by the monitor.
    }
    finally
    {
        // Always use Finally to ensure that you exit the Monitor.

        // The call to Exit() will FAIL!!!
        // The synchronizing object created for x in Exit() will be different
        // than the object used in Enter(). SynchronizationLockException
        // will be thrown.
        Monitor::Exit(x);
    }
}
catch (SynchronizationLockException^ SyncEx)
{
    Console::WriteLine("A SynchronizationLockException occurred. Message:");
    Console::WriteLine(SyncEx->Message);
}

Bien qu'il soit possible de convertir une variable de type valeur avant d'appeler Enter et Exit, comme illustré dans l'exemple suivant, et de passer le même objet converti aux deux méthodes, cette opération n'offre aucun avantage. Les changements apportés à la variable n'apparaissent pas dans la copie convertie, et il est impossible de changer la valeur de cette copie.

Dim x As Integer = 1
Dim o As object = x

Monitor.Enter(o)
Try
    ' Code that needs to be protected by the monitor.
Finally
    ' Always use Finally to ensure that you exit the Monitor.
    Monitor.Exit(o)
End Try
int x = 1;
object o = x;

Monitor.Enter(o);
try
{
    // Code that needs to be protected by the monitor.
}
finally
{
    // Always use Finally to ensure that you exit the Monitor.
    Monitor.Exit(o);
}
int x = 1;
Object^ o = x;

Monitor::Enter(o);
try
{
    // Code that needs to be protected by the monitor.
}
finally
{
    // Always use Finally to ensure that you exit the Monitor.
    Monitor::Exit(o);
}

Il est important de noter la distinction entre l'utilisation des objets Monitor et WaitHandle. Les objets Monitor sont purement managés, entièrement portables et peuvent s'avérer plus efficaces en termes d'exigences en matière de ressources de système d'exploitation. Les objets WaitHandle représentent des objets d'attente de système d'exploitation et sont utiles pour la synchronisation entre le code managé et le code non managé. Ils exposent certaines fonctionnalités avancées de système d'exploitation comme la possibilité d'attendre plusieurs objets à la fois.

L'exemple de code suivant illustre l'utilisation combinée de la classe Monitor (implémenté avec les instructions de compilateur lock et SyncLock), de la classe Interlocked et de la classe AutoResetEvent.

Imports System
Imports System.Threading

' Note: The class whose internal public member is the synchronizing
' method is not public; none of the client code takes a lock on the
' Resource object.The member of the nonpublic class takes the lock on
' itself. Written this way, malicious code cannot take a lock on
' a public object.
Class SyncResource
    Public Sub Access(threadNum As Int32)
        ' Uses Monitor class to enforce synchronization.
        SyncLock Me
            ' Synchronized: Despite the next conditional, each thread
            ' waits on its predecessor.
            If threadNum Mod 2 = 0 Then
                Thread.Sleep(2000)
            End If
            Console.WriteLine("Start Synched Resource access (Thread={0})", threadNum)
            Thread.Sleep(200)
            Console.WriteLine("Stop Synched Resource access  (Thread={0})", threadNum)
        End SyncLock
    End Sub
End Class

' Without the lock, the method is called in the order in which threads reach it.
Class UnSyncResource
    Public Sub Access(threadNum As Int32)
        ' Does not use Monitor class to enforce synchronization.
        ' The next call throws the thread order.
        If threadNum Mod 2 = 0 Then
            Thread.Sleep(2000)
        End If
        Console.WriteLine("Start UnSynched Resource access (Thread={0})", threadNum)
        Thread.Sleep(200)
        Console.WriteLine("Stop UnSynched Resource access  (Thread={0})", threadNum)
    End Sub
End Class

Public Class App
    Private Shared numAsyncOps As Int32 = 5
    Private Shared asyncOpsAreDone As New AutoResetEvent(false)
    Private Shared SyncRes As New SyncResource()
    Private Shared UnSyncRes As New UnSyncResource()

    Public Shared Sub Main()
        For threadNum As Int32 = 0 To 4
            ThreadPool.QueueUserWorkItem(New WaitCallback(AddressOf SyncUpdateResource), threadNum)
        Next threadNum

        ' Wait until this WaitHandle is signaled.
        asyncOpsAreDone.WaitOne()
        Console.WriteLine(vbTab + vbNewLine + "All synchronized operations have completed." + vbTab + vbNewLine)

        ' Reset the thread count for unsynchronized calls.
        numAsyncOps = 5

        For threadNum As Int32 = 0 To 4
            ThreadPool.QueueUserWorkItem(New WaitCallback(AddressOf UnSyncUpdateResource), threadNum)
        Next threadNum

        ' Wait until this WaitHandle is signaled.
        asyncOpsAreDone.WaitOne()
        Console.WriteLine("\t\nAll unsynchronized thread operations have completed.")
    End Sub

    ' The callback method's signature MUST match that of a
    ' System.Threading.TimerCallback delegate (it takes an Object
    ' parameter and returns void).
    Shared Sub SyncUpdateResource(state As Object)
        ' This calls the internal synchronized method, passing
        ' a thread number.
        SyncRes.Access(CType(state, Int32))

        ' Count down the number of methods that the threads have called.
        ' This must be synchronized, however; you cannot know which thread
        ' will access the value **before** another thread's incremented
        ' value has been stored into the variable.
        If Interlocked.Decrement(numAsyncOps) = 0 Then
            ' Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone.Set()
        End If
    End Sub

    ' The callback method's signature MUST match that of a
    ' System.Threading.TimerCallback delegate (it takes an Object
    ' parameter and returns void).
    Shared Sub UnSyncUpdateResource(state As Object)
        ' This calls the unsynchronized method, passing a thread number.
        UnSyncRes.Access(CType(state, Int32))

        ' Count down the number of methods that the threads have called.
        ' This must be synchronized, however; you cannot know which thread
        ' will access the value **before** another thread's incremented
        ' value has been stored into the variable.
        If Interlocked.Decrement(numAsyncOps) = 0 Then
            ' Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone.Set()
        End If
    End Sub
End Class
using System;
using System.Threading;

// Note: The class whose internal public member is the synchronizing
// method is not public; none of the client code takes a lock on the
// Resource object.The member of the nonpublic class takes the lock on
// itself. Written this way, malicious code cannot take a lock on
// a public object.
class SyncResource
{
    public void Access(Int32 threadNum)
    {
        // Uses Monitor class to enforce synchronization.
        lock (this)
        {
            // Synchronized: Despite the next conditional, each thread
            // waits on its predecessor.
            if (threadNum % 2 == 0)
            {
                Thread.Sleep(2000);
            }
            Console.WriteLine("Start Synched Resource access (Thread={0})", threadNum);
            Thread.Sleep(200);
            Console.WriteLine("Stop Synched Resource access  (Thread={0})", threadNum);
        }
    }
}

// Without the lock, the method is called in the order in which threads reach it.
class UnSyncResource
{
    public void Access(Int32 threadNum)
    {
        // Does not use Monitor class to enforce synchronization.
        // The next call throws the thread order.
        if (threadNum % 2 == 0)
        {
            Thread.Sleep(2000);
        }
        Console.WriteLine("Start UnSynched Resource access (Thread={0})", threadNum);
        Thread.Sleep(200);
        Console.WriteLine("Stop UnSynched Resource access  (Thread={0})", threadNum);
    }
}

public class App
{
    static Int32 numAsyncOps = 5;
    static AutoResetEvent asyncOpsAreDone = new AutoResetEvent(false);
    static SyncResource SyncRes = new SyncResource();
    static UnSyncResource UnSyncRes = new UnSyncResource();

    public static void Main()
    {
        for (Int32 threadNum = 0; threadNum < 5; threadNum++)
        {
            ThreadPool.QueueUserWorkItem(new WaitCallback(SyncUpdateResource), threadNum);
        }

        // Wait until this WaitHandle is signaled.
        asyncOpsAreDone.WaitOne();
        Console.WriteLine("\t\nAll synchronized operations have completed.\t\n");

        // Reset the thread count for unsynchronized calls.
        numAsyncOps = 5;

        for (Int32 threadNum = 0; threadNum < 5; threadNum++)
        {
            ThreadPool.QueueUserWorkItem(new WaitCallback(UnSyncUpdateResource), threadNum);
        }

        // Wait until this WaitHandle is signaled.
        asyncOpsAreDone.WaitOne();
        Console.WriteLine("\t\nAll unsynchronized thread operations have completed.");
    }

    // The callback method's signature MUST match that of a
    // System.Threading.TimerCallback delegate (it takes an Object
    // parameter and returns void).
    static void SyncUpdateResource(Object state)
    {
        // This calls the internal synchronized method, passing
        // a thread number.
        SyncRes.Access((Int32) state);

        // Count down the number of methods that the threads have called.
        // This must be synchronized, however; you cannot know which thread
        // will access the value **before** another thread's incremented
        // value has been stored into the variable.
        if (Interlocked.Decrement(ref numAsyncOps) == 0)
        {
            // Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone.Set();
        }
    }

    // The callback method's signature MUST match that of a
    // System.Threading.TimerCallback delegate (it takes an Object
    // parameter and returns void).
    static void UnSyncUpdateResource(Object state)
    {
        // This calls the unsynchronized method, passing a thread number.
        UnSyncRes.Access((Int32) state);

        // Count down the number of methods that the threads have called.
        // This must be synchronized, however; you cannot know which thread
        // will access the value **before** another thread's incremented
        // value has been stored into the variable.
        if (Interlocked.Decrement(ref numAsyncOps) == 0)
        {
            // Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone.Set();
        }
    }
}
#using <System.dll>

using namespace System;
using namespace System::Threading;

// Note: The class whose internal public member is the synchronizing
// method is not public; none of the client code takes a lock on the
// Resource object.The member of the nonpublic class takes the lock on
// itself. Written this way, malicious code cannot take a lock on
// a public object.
ref class SyncResource
{
public:
    void Access(Int32 threadNum)
    {
        // Uses Monitor class to enforce synchronization.
        Monitor::Enter(this);
        try
        {
            // Synchronized: Despite the next conditional, each thread
            // waits on its predecessor.
            if (threadNum % 2 == 0)
            {
                Thread::Sleep(2000);
            }
            Console::WriteLine("Start Synched Resource access (Thread={0})", threadNum);
            Thread::Sleep(200);
            Console::WriteLine("Stop Synched Resource access  (Thread={0})", threadNum);
        }
        finally
        {
            Monitor::Exit(this);
        }
    }
};

// Without the lock, the method is called in the order in which threads reach it.
ref class UnSyncResource
{
public:
    void Access(Int32 threadNum)
    {
        // Does not use Monitor class to enforce synchronization.
        // The next call throws the thread order.
        if (threadNum % 2 == 0)
        {
            Thread::Sleep(2000);
        }
        Console::WriteLine("Start UnSynched Resource access (Thread={0})", threadNum);
        Thread::Sleep(200);
        Console::WriteLine("Stop UnSynched Resource access  (Thread={0})", threadNum);
    }
};

public ref class App
{
private:
    static Int32 numAsyncOps = 5;
    static AutoResetEvent^ asyncOpsAreDone = gcnew AutoResetEvent(false);
    static SyncResource^ SyncRes = gcnew SyncResource();
    static UnSyncResource^ UnSyncRes = gcnew UnSyncResource();

public:
    static void Main()
    {
        for (Int32 threadNum = 0; threadNum < 5; threadNum++)
        {
            ThreadPool::QueueUserWorkItem(gcnew WaitCallback(SyncUpdateResource), threadNum);
        }

        // Wait until this WaitHandle is signaled.
        asyncOpsAreDone->WaitOne();
        Console::WriteLine("\t\nAll synchronized operations have completed.\t\n");

        // Reset the thread count for unsynchronized calls.
        numAsyncOps = 5;

        for (Int32 threadNum = 0; threadNum < 5; threadNum++)
        {
            ThreadPool::QueueUserWorkItem(gcnew WaitCallback(UnSyncUpdateResource), threadNum);
        }

        // Wait until this WaitHandle is signaled.
        asyncOpsAreDone->WaitOne();
        Console::WriteLine("\t\nAll unsynchronized thread operations have completed.");
    }

    // The callback method's signature MUST match that of a
    // System.Threading.TimerCallback delegate (it takes an Object
    // parameter and returns void).
    static void SyncUpdateResource(Object^ state)
    {
        // This calls the internal synchronized method, passing
        // a thread number.
        SyncRes->Access((Int32) state);

        // Count down the number of methods that the threads have called.
        // This must be synchronized, however; you cannot know which thread
        // will access the value **before** another thread's incremented
        // value has been stored into the variable.
        if (Interlocked::Decrement(numAsyncOps) == 0)
        {
            // Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone->Set();
        }
    }

    // The callback method's signature MUST match that of a
    // System.Threading.TimerCallback delegate (it takes an Object
    // parameter and returns void).
    static void UnSyncUpdateResource(Object^ state)
    {
        // This calls the unsynchronized method, passing a thread number.
        UnSyncRes->Access((Int32) state);

        // Count down the number of methods that the threads have called.
        // This must be synchronized, however; you cannot know which thread
        // will access the value **before** another thread's incremented
        // value has been stored into the variable.
        if (Interlocked::Decrement(numAsyncOps) == 0)
        {
            // Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone->Set();
        }
    }
};

int main()
{
    App::Main();
}

Voir aussi

Référence

Monitor

Autres ressources

Fonctionnalités et objets de threading