Partager via


Activer PyTorch avec DirectML sur Windows

PyTorch avec DirectML offre un moyen facile à utiliser pour les développeurs d’essayer les modèles IA les plus récents et les plus grands sur leur ordinateur Windows. Vous pouvez télécharger PyTorch avec DirectML en installant le package PyPi torch-directml . Une fois configuré, vous pouvez commencer par nos exemples ou utiliser AI Toolkit pour VS Code.

Vérifier votre version de Windows

Le package torch-directml sur Windows natif fonctionne à partir de Windows 10, version 1709 (build 16299 ou ultérieure). Vous pouvez vérifier votre numéro de version de build en exécutant winver la commande Exécuter (touche de logo Windows + R).

Rechercher les mises à jour du pilote GPU

Vérifiez que le pilote GPU le plus récent est installé. Sélectionnez Rechercher les mises à jour dans la section Windows Update de l’application Paramètres .

Configurer Torch-DirectML

Nous vous recommandons de configurer un environnement Python virtuel dans Windows. Il existe de nombreux outils que vous pouvez utiliser pour configurer un environnement Python virtuel. Pour ces instructions, nous allons utiliser Miniconda d’Anaconda. Le reste de cette configuration suppose que vous utilisez un environnement Miniconda.

Configurer un environnement Python

Téléchargez et installez le programme d’installation de Miniconda Windows sur votre système. Il existe des conseils supplémentaires pour la configuration sur le site d’Anaconda. Une fois Miniconda installé, créez un environnement à l’aide de Python nommé pytdml et activez-le via les commandes suivantes.

conda create --name pytdml -y
conda activate pytdml

Installer PyTorch et Torch-DirectML

Remarque

Le package torch-directml prend en charge jusqu’à PyTorch 2.3.1

Tout ce qui est nécessaire pour configurer le système consiste à installer la dernière version de torch-directml en exécutant la commande suivante :

pip install torch-directml

Vérification et création d’appareils

Une fois que vous avez installé le package torch-directml , vous pouvez vérifier qu’il s’exécute correctement en ajoutant deux tenseurs. Commencez par démarrer une session Python interactive et importez Torch avec les lignes suivantes :

import torch
import torch_directml
dml = torch_directml.device()

La version actuelle de torch-directml est affectée au backend Torch « PrivateUse1 ». L’API torch_directml.device() est un wrapper pratique pour envoyer vos tenseurs à l’appareil DirectML.

Avec le dispositif DirectML créé, vous pouvez maintenant définir deux tenseurs simples ; un tenseur contenant un 1 et un autre contenant un 2. Placez les tenseurs sur l’appareil « dml ».

tensor1 = torch.tensor([1]).to(dml) # Note that dml is a variable, not a string!
tensor2 = torch.tensor([2]).to(dml)

Ajoutez les tenseurs ensemble et imprimez les résultats.

dml_algebra = tensor1 + tensor2
dml_algebra.item()

Vous devez voir le nombre 3 en sortie, comme dans l’exemple ci-dessous.

>>> import torch
>>> tensor1 = torch.tensor([1]).to(dml)
>>> tensor2 = torch.tensor([2]).to(dml)
>>> dml_algebra = tensor1 + tensor2
>>> dml_algebra.item()
3

PyTorch avec des exemples DirectML et des commentaires

Consultez nos exemples pour voir plus d’utilisations de PyTorch avec DirectML. Si vous rencontrez des problèmes ou si vous avez des commentaires sur le package PyTorch avec DirectML, contactez notre équipe ici.