Attributs dans Media Foundation
Un attribut est une paire clé/valeur, où la clé est un GUID et la valeur est un PROPVARIANT. Les attributs sont utilisés dans Microsoft Media Foundation pour configurer des objets, décrire les formats multimédias, interroger les propriétés de l’objet et d’autres fins.
Cette rubrique contient les sections suivantes.
- Présentation des attributs
- Sérialisation des attributs
- Implémentation d’IMFAttributes
- Rubriques connexes
Présentation des attributs
Un attribut est une paire clé/valeur, où la clé est un GUID et la valeur est un PROPVARIANT. Les valeurs d’attribut sont limitées aux types de données suivants :
- Entier 32 bits non signé (UINT32).
- Entier 64 bits non signé (UINT64).
- Nombre à virgule flottante 64 bits.
- GUID (identificateur global unique).
- Chaîne à caractères larges se terminant par le caractère Null.
- Tableau d’octets.
- Pointeur IUnknown .
Ces types sont définis dans l’énumération MF_ATTRIBUTE_TYPE . Pour définir ou récupérer des valeurs d’attribut, utilisez l’interface IMFAttributes . Cette interface contient des méthodes de type sécurisé pour obtenir et définir des valeurs par type de données. Par exemple, pour définir un entier 32 bits, appelez IMFAttributes::SetUINT32. Les clés d’attribut sont uniques au sein d’un objet. Si vous définissez deux valeurs différentes avec la même clé, la deuxième valeur remplace la première.
Plusieurs interfaces Media Foundation héritent de l’interface IMFAttributes . Les objets qui exposent cette interface ont des attributs facultatifs ou obligatoires que l’application doit définir sur l’objet, ou ont des attributs que l’application peut récupérer. En outre, certaines méthodes et fonctions prennent un pointeur IMFAttributes comme paramètre, ce qui permet à l’application de définir des informations de configuration. L’application doit créer un magasin d’attributs pour contenir les attributs de configuration. Pour créer un magasin d’attributs vide, appelez MFCreateAttributes.
Le code suivant montre deux fonctions. Le premier crée un magasin d’attributs et définit un attribut hypothétique nommé MY_ATTRIBUTE avec une valeur de chaîne. La deuxième fonction récupère la valeur de cet attribut.
extern const GUID MY_ATTRIBUTE;
HRESULT ShowCreateAttributeStore(IMFAttributes **ppAttributes)
{
IMFAttributes *pAttributes = NULL;
const UINT32 cElements = 10; // Starting size.
// Create the empty attribute store.
HRESULT hr = MFCreateAttributes(&pAttributes, cElements);
// Set the MY_ATTRIBUTE attribute with a string value.
if (SUCCEEDED(hr))
{
hr = pAttributes->SetString(
MY_ATTRIBUTE,
L"This is a string value"
);
}
// Return the IMFAttributes pointer to the caller.
if (SUCCEEDED(hr))
{
*ppAttributes = pAttributes;
(*ppAttributes)->AddRef();
}
SAFE_RELEASE(pAttributes);
return hr;
}
HRESULT ShowGetAttributes()
{
IMFAttributes *pAttributes = NULL;
WCHAR *pwszValue = NULL;
UINT32 cchLength = 0;
// Create the attribute store.
HRESULT hr = ShowCreateAttributeStore(&pAttributes);
// Get the attribute.
if (SUCCEEDED(hr))
{
hr = pAttributes->GetAllocatedString(
MY_ATTRIBUTE,
&pwszValue,
&cchLength
);
}
CoTaskMemFree(pwszValue);
SAFE_RELEASE(pAttributes);
return hr;
}
Pour obtenir la liste complète des attributs Media Foundation, consultez Attributs Media Foundation. Le type de données attendu pour chaque attribut y est documenté.
Sérialisation des attributs
Media Foundation a deux fonctions pour sérialiser les magasins d’attributs. L’un écrit les attributs dans un tableau d’octets, l’autre les écrit dans un flux qui prend en charge l’interface IStream . Chaque fonction a une fonction correspondante qui charge les données.
Opération | Tableau d’octets | IStream |
---|---|---|
Enregistrer | MFGetAttributesAsBlob | MFSerializeAttributesToStream |
Load | MFInitAttributesFromBlob | MFDeserializeAttributesFromStream |
Pour écrire le contenu d’un magasin d’attributs dans un tableau d’octets, appelez MFGetAttributesAsBlob. Les attributs avec des valeurs de pointeur IUnknown sont ignorés. Pour charger à nouveau les attributs dans un magasin d’attributs, appelez MFInitAttributesFromBlob.
Pour écrire un magasin d’attributs dans un flux, appelez MFSerializeAttributesToStream. Cette fonction peut marshaler les valeurs de pointeur IUnknown . L’appelant doit fournir un objet stream qui implémente l’interface IStream . Pour charger un magasin d’attributs à partir d’un flux, appelez MFDeserializeAttributesFromStream.
Implémentation d’IMFAttributes
Media Foundation fournit une implémentation d’actions d’IMFAttributes, obtenue en appelant la fonction MFCreateAttributes . Dans la plupart des cas, vous devez utiliser cette implémentation et ne pas fournir votre propre implémentation personnalisée.
Il existe une situation dans laquelle vous devrez peut-être implémenter l’interface IMFAttributes : si vous implémentez une deuxième interface qui hérite de IMFAttributes. Dans ce cas, vous devez fournir des implémentations pour les méthodes IMFAttributes héritées par la deuxième interface.
Dans ce cas, il est recommandé d’encapsuler l’implémentation existante d’IMFAttributes par Media Foundation. Le code suivant montre un modèle de classe qui contient un pointeur IMFAttributes et encapsule chaque méthode IMFAttributes , à l’exception des méthodes IUnknown .
#include <assert.h>
// Helper class to implement IMFAttributes.
// This is an abstract class; the derived class must implement the IUnknown
// methods. This class is a wrapper for the standard attribute store provided
// in Media Foundation.
// template parameter:
// The interface you are implementing, either IMFAttributes or an interface
// that inherits IMFAttributes, such as IMFActivate
template <class IFACE=IMFAttributes>
class CBaseAttributes : public IFACE
{
protected:
IMFAttributes *m_pAttributes;
// This version of the constructor does not initialize the
// attribute store. The derived class must call Initialize() in
// its own constructor.
CBaseAttributes() : m_pAttributes(NULL)
{
}
// This version of the constructor initializes the attribute
// store, but the derived class must pass an HRESULT parameter
// to the constructor.
CBaseAttributes(HRESULT& hr, UINT32 cInitialSize = 0) : m_pAttributes(NULL)
{
hr = Initialize(cInitialSize);
}
// The next version of the constructor uses a caller-provided
// implementation of IMFAttributes.
// (Sometimes you want to delegate IMFAttributes calls to some
// other object that implements IMFAttributes, rather than using
// MFCreateAttributes.)
CBaseAttributes(HRESULT& hr, IUnknown *pUnk)
{
hr = Initialize(pUnk);
}
virtual ~CBaseAttributes()
{
if (m_pAttributes)
{
m_pAttributes->Release();
}
}
// Initializes the object by creating the standard Media Foundation attribute store.
HRESULT Initialize(UINT32 cInitialSize = 0)
{
if (m_pAttributes == NULL)
{
return MFCreateAttributes(&m_pAttributes, cInitialSize);
}
else
{
return S_OK;
}
}
// Initializes this object from a caller-provided attribute store.
// pUnk: Pointer to an object that exposes IMFAttributes.
HRESULT Initialize(IUnknown *pUnk)
{
if (m_pAttributes)
{
m_pAttributes->Release();
m_pAttributes = NULL;
}
return pUnk->QueryInterface(IID_PPV_ARGS(&m_pAttributes));
}
public:
// IMFAttributes methods
STDMETHODIMP GetItem(REFGUID guidKey, PROPVARIANT* pValue)
{
assert(m_pAttributes);
return m_pAttributes->GetItem(guidKey, pValue);
}
STDMETHODIMP GetItemType(REFGUID guidKey, MF_ATTRIBUTE_TYPE* pType)
{
assert(m_pAttributes);
return m_pAttributes->GetItemType(guidKey, pType);
}
STDMETHODIMP CompareItem(REFGUID guidKey, REFPROPVARIANT Value, BOOL* pbResult)
{
assert(m_pAttributes);
return m_pAttributes->CompareItem(guidKey, Value, pbResult);
}
STDMETHODIMP Compare(
IMFAttributes* pTheirs,
MF_ATTRIBUTES_MATCH_TYPE MatchType,
BOOL* pbResult
)
{
assert(m_pAttributes);
return m_pAttributes->Compare(pTheirs, MatchType, pbResult);
}
STDMETHODIMP GetUINT32(REFGUID guidKey, UINT32* punValue)
{
assert(m_pAttributes);
return m_pAttributes->GetUINT32(guidKey, punValue);
}
STDMETHODIMP GetUINT64(REFGUID guidKey, UINT64* punValue)
{
assert(m_pAttributes);
return m_pAttributes->GetUINT64(guidKey, punValue);
}
STDMETHODIMP GetDouble(REFGUID guidKey, double* pfValue)
{
assert(m_pAttributes);
return m_pAttributes->GetDouble(guidKey, pfValue);
}
STDMETHODIMP GetGUID(REFGUID guidKey, GUID* pguidValue)
{
assert(m_pAttributes);
return m_pAttributes->GetGUID(guidKey, pguidValue);
}
STDMETHODIMP GetStringLength(REFGUID guidKey, UINT32* pcchLength)
{
assert(m_pAttributes);
return m_pAttributes->GetStringLength(guidKey, pcchLength);
}
STDMETHODIMP GetString(REFGUID guidKey, LPWSTR pwszValue, UINT32 cchBufSize, UINT32* pcchLength)
{
assert(m_pAttributes);
return m_pAttributes->GetString(guidKey, pwszValue, cchBufSize, pcchLength);
}
STDMETHODIMP GetAllocatedString(REFGUID guidKey, LPWSTR* ppwszValue, UINT32* pcchLength)
{
assert(m_pAttributes);
return m_pAttributes->GetAllocatedString(guidKey, ppwszValue, pcchLength);
}
STDMETHODIMP GetBlobSize(REFGUID guidKey, UINT32* pcbBlobSize)
{
assert(m_pAttributes);
return m_pAttributes->GetBlobSize(guidKey, pcbBlobSize);
}
STDMETHODIMP GetBlob(REFGUID guidKey, UINT8* pBuf, UINT32 cbBufSize, UINT32* pcbBlobSize)
{
assert(m_pAttributes);
return m_pAttributes->GetBlob(guidKey, pBuf, cbBufSize, pcbBlobSize);
}
STDMETHODIMP GetAllocatedBlob(REFGUID guidKey, UINT8** ppBuf, UINT32* pcbSize)
{
assert(m_pAttributes);
return m_pAttributes->GetAllocatedBlob(guidKey, ppBuf, pcbSize);
}
STDMETHODIMP GetUnknown(REFGUID guidKey, REFIID riid, LPVOID* ppv)
{
assert(m_pAttributes);
return m_pAttributes->GetUnknown(guidKey, riid, ppv);
}
STDMETHODIMP SetItem(REFGUID guidKey, REFPROPVARIANT Value)
{
assert(m_pAttributes);
return m_pAttributes->SetItem(guidKey, Value);
}
STDMETHODIMP DeleteItem(REFGUID guidKey)
{
assert(m_pAttributes);
return m_pAttributes->DeleteItem(guidKey);
}
STDMETHODIMP DeleteAllItems()
{
assert(m_pAttributes);
return m_pAttributes->DeleteAllItems();
}
STDMETHODIMP SetUINT32(REFGUID guidKey, UINT32 unValue)
{
assert(m_pAttributes);
return m_pAttributes->SetUINT32(guidKey, unValue);
}
STDMETHODIMP SetUINT64(REFGUID guidKey,UINT64 unValue)
{
assert(m_pAttributes);
return m_pAttributes->SetUINT64(guidKey, unValue);
}
STDMETHODIMP SetDouble(REFGUID guidKey, double fValue)
{
assert(m_pAttributes);
return m_pAttributes->SetDouble(guidKey, fValue);
}
STDMETHODIMP SetGUID(REFGUID guidKey, REFGUID guidValue)
{
assert(m_pAttributes);
return m_pAttributes->SetGUID(guidKey, guidValue);
}
STDMETHODIMP SetString(REFGUID guidKey, LPCWSTR wszValue)
{
assert(m_pAttributes);
return m_pAttributes->SetString(guidKey, wszValue);
}
STDMETHODIMP SetBlob(REFGUID guidKey, const UINT8* pBuf, UINT32 cbBufSize)
{
assert(m_pAttributes);
return m_pAttributes->SetBlob(guidKey, pBuf, cbBufSize);
}
STDMETHODIMP SetUnknown(REFGUID guidKey, IUnknown* pUnknown)
{
assert(m_pAttributes);
return m_pAttributes->SetUnknown(guidKey, pUnknown);
}
STDMETHODIMP LockStore()
{
assert(m_pAttributes);
return m_pAttributes->LockStore();
}
STDMETHODIMP UnlockStore()
{
assert(m_pAttributes);
return m_pAttributes->UnlockStore();
}
STDMETHODIMP GetCount(UINT32* pcItems)
{
assert(m_pAttributes);
return m_pAttributes->GetCount(pcItems);
}
STDMETHODIMP GetItemByIndex(UINT32 unIndex, GUID* pguidKey, PROPVARIANT* pValue)
{
assert(m_pAttributes);
return m_pAttributes->GetItemByIndex(unIndex, pguidKey, pValue);
}
STDMETHODIMP CopyAllItems(IMFAttributes* pDest)
{
assert(m_pAttributes);
return m_pAttributes->CopyAllItems(pDest);
}
// Helper functions
HRESULT SerializeToStream(DWORD dwOptions, IStream* pStm)
// dwOptions: Flags from MF_ATTRIBUTE_SERIALIZE_OPTIONS
{
assert(m_pAttributes);
return MFSerializeAttributesToStream(m_pAttributes, dwOptions, pStm);
}
HRESULT DeserializeFromStream(DWORD dwOptions, IStream* pStm)
{
assert(m_pAttributes);
return MFDeserializeAttributesFromStream(m_pAttributes, dwOptions, pStm);
}
// SerializeToBlob: Stores the attributes in a byte array.
//
// ppBuf: Receives a pointer to the byte array.
// pcbSize: Receives the size of the byte array.
//
// The caller must free the array using CoTaskMemFree.
HRESULT SerializeToBlob(UINT8 **ppBuffer, UINT32 *pcbSize)
{
assert(m_pAttributes);
if (ppBuffer == NULL)
{
return E_POINTER;
}
if (pcbSize == NULL)
{
return E_POINTER;
}
*ppBuffer = NULL;
*pcbSize = 0;
UINT32 cbSize = 0;
BYTE *pBuffer = NULL;
HRESULT hr = MFGetAttributesAsBlobSize(m_pAttributes, &cbSize);
if (FAILED(hr))
{
return hr;
}
pBuffer = (BYTE*)CoTaskMemAlloc(cbSize);
if (pBuffer == NULL)
{
return E_OUTOFMEMORY;
}
hr = MFGetAttributesAsBlob(m_pAttributes, pBuffer, cbSize);
if (SUCCEEDED(hr))
{
*ppBuffer = pBuffer;
*pcbSize = cbSize;
}
else
{
CoTaskMemFree(pBuffer);
}
return hr;
}
HRESULT DeserializeFromBlob(const UINT8* pBuffer, UINT cbSize)
{
assert(m_pAttributes);
return MFInitAttributesFromBlob(m_pAttributes, pBuffer, cbSize);
}
HRESULT GetRatio(REFGUID guidKey, UINT32* pnNumerator, UINT32* punDenominator)
{
assert(m_pAttributes);
return MFGetAttributeRatio(m_pAttributes, guidKey, pnNumerator, punDenominator);
}
HRESULT SetRatio(REFGUID guidKey, UINT32 unNumerator, UINT32 unDenominator)
{
assert(m_pAttributes);
return MFSetAttributeRatio(m_pAttributes, guidKey, unNumerator, unDenominator);
}
// Gets an attribute whose value represents the size of something (eg a video frame).
HRESULT GetSize(REFGUID guidKey, UINT32* punWidth, UINT32* punHeight)
{
assert(m_pAttributes);
return MFGetAttributeSize(m_pAttributes, guidKey, punWidth, punHeight);
}
// Sets an attribute whose value represents the size of something (eg a video frame).
HRESULT SetSize(REFGUID guidKey, UINT32 unWidth, UINT32 unHeight)
{
assert(m_pAttributes);
return MFSetAttributeSize (m_pAttributes, guidKey, unWidth, unHeight);
}
};
Le code suivant montre comment dériver une classe à partir de ce modèle :
#include <shlwapi.h>
class MyObject : public CBaseAttributes<>
{
MyObject() : m_nRefCount(1) { }
~MyObject() { }
long m_nRefCount;
public:
// IUnknown
STDMETHODIMP MyObject::QueryInterface(REFIID riid, void** ppv)
{
static const QITAB qit[] =
{
QITABENT(MyObject, IMFAttributes),
{ 0 },
};
return QISearch(this, qit, riid, ppv);
}
STDMETHODIMP_(ULONG) MyObject::AddRef()
{
return InterlockedIncrement(&m_nRefCount);
}
STDMETHODIMP_(ULONG) MyObject::Release()
{
ULONG uCount = InterlockedDecrement(&m_nRefCount);
if (uCount == 0)
{
delete this;
}
return uCount;
}
// Static function to create an instance of the object.
static HRESULT CreateInstance(MyObject **ppObject)
{
HRESULT hr = S_OK;
MyObject *pObject = new MyObject();
if (pObject == NULL)
{
return E_OUTOFMEMORY;
}
// Initialize the attribute store.
hr = pObject->Initialize();
if (FAILED(hr))
{
delete pObject;
return hr;
}
*ppObject = pObject;
(*ppObject)->AddRef();
return S_OK;
}
};
Vous devez appeler CBaseAttributes::Initialize
pour créer le magasin d’attributs. Dans l’exemple précédent, cela s’effectue à l’intérieur d’une fonction de création statique.
L’argument de modèle est un type d’interface, qui est défini par défaut sur IMFAttributes. Si votre objet implémente une interface qui hérite d’IMFAttributes, comme IMFActivate, définissez l’argument de modèle comme le nom de l’interface dérivée.
Rubriques connexes