Entidad de aprendizaje automático
Importante
LUIS se retirará el 1 de octubre de 2025. Además, a partir del 1 de abril de 2023, ya no se podrán crear recursos de este servicio. Se recomienda migrar las aplicaciones de LUIS al reconocimiento del lenguaje conversacional para aprovechar el soporte continuo del producto y las capacidades multilingües.
La entidad de aprendizaje automático es la entidad preferida para compilar aplicaciones de LUIS.
Ejemplo de JSON
Supongamos que la aplicación recoge pedidos de pizzas, como el tutorial de entidad descomponible. Cada pedido puede incluir varias pizzas diferentes, incluyendo distintos tamaños.
Las expresiones de ejemplo incluyen:
Expresiones de ejemplo para la aplicación de pizzas |
---|
Can I get a pepperoni pizza and a can of coke please |
can I get a small pizza with onions peppers and olives |
pickup an extra large meat lovers pizza |
- Respuesta de punto de conexión de predicción de V3
- Respuesta de punto de conexión de predicción de V2
Dado que una entidad con aprendizaje automático puede tener muchas subentidades con características obligatorias, esto solo es un ejemplo. Debe tenerse en cuenta la posibilidad de una guía para lo que devolverá la entidad.
Tenga en cuenta la consulta siguiente:
deliver 1 large cheese pizza on thin crust and 2 medium pepperoni pizzas on deep dish crust
Este es el valor JSON si verbose=false
se establece en la cadena de consulta:
"entities": {
"Order": [
{
"FullPizzaWithModifiers": [
{
"PizzaType": [
"cheese pizza"
],
"Size": [
[
"Large"
]
],
"Quantity": [
1
]
},
{
"PizzaType": [
"pepperoni pizzas"
],
"Size": [
[
"Medium"
]
],
"Quantity": [
2
],
"Crust": [
[
"Deep Dish"
]
]
}
]
}
],
"ToppingList": [
[
"Cheese"
],
[
"Pepperoni"
]
],
"CrustList": [
[
"Thin"
]
]
}
Este es el valor JSON si verbose=true
se establece en la cadena de consulta:
"entities": {
"Order": [
{
"FullPizzaWithModifiers": [
{
"PizzaType": [
"cheese pizza"
],
"Size": [
[
"Large"
]
],
"Quantity": [
1
],
"$instance": {
"PizzaType": [
{
"type": "PizzaType",
"text": "cheese pizza",
"startIndex": 16,
"length": 12,
"score": 0.999998868,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Size": [
{
"type": "SizeList",
"text": "large",
"startIndex": 10,
"length": 5,
"score": 0.998720646,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Quantity": [
{
"type": "builtin.number",
"text": "1",
"startIndex": 8,
"length": 1,
"score": 0.999878645,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
},
{
"PizzaType": [
"pepperoni pizzas"
],
"Size": [
[
"Medium"
]
],
"Quantity": [
2
],
"Crust": [
[
"Deep Dish"
]
],
"$instance": {
"PizzaType": [
{
"type": "PizzaType",
"text": "pepperoni pizzas",
"startIndex": 56,
"length": 16,
"score": 0.999987066,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Size": [
{
"type": "SizeList",
"text": "medium",
"startIndex": 49,
"length": 6,
"score": 0.999841452,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Quantity": [
{
"type": "builtin.number",
"text": "2",
"startIndex": 47,
"length": 1,
"score": 0.9996054,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Crust": [
{
"type": "CrustList",
"text": "deep dish crust",
"startIndex": 76,
"length": 15,
"score": 0.761551,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}
],
"$instance": {
"FullPizzaWithModifiers": [
{
"type": "FullPizzaWithModifiers",
"text": "1 large cheese pizza on thin crust",
"startIndex": 8,
"length": 34,
"score": 0.616001546,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
},
{
"type": "FullPizzaWithModifiers",
"text": "2 medium pepperoni pizzas on deep dish crust",
"startIndex": 47,
"length": 44,
"score": 0.7395033,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}
],
"ToppingList": [
[
"Cheese"
],
[
"Pepperoni"
]
],
"CrustList": [
[
"Thin"
]
],
"$instance": {
"Order": [
{
"type": "Order",
"text": "1 large cheese pizza on thin crust and 2 medium pepperoni pizzas on deep dish crust",
"startIndex": 8,
"length": 83,
"score": 0.6881274,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"ToppingList": [
{
"type": "ToppingList",
"text": "cheese",
"startIndex": 16,
"length": 6,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
},
{
"type": "ToppingList",
"text": "pepperoni",
"startIndex": 56,
"length": 9,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"CrustList": [
{
"type": "CrustList",
"text": "thin crust",
"startIndex": 32,
"length": 10,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}
Pasos siguientes
Obtenga más información acerca de la entidad de aprendizaje automático, incluyendo un tutorial, conceptos y una guía de procedimientos.
Obtenga información sobre la entidad lista y la entidad expresión regular.