Nota
L'accesso a questa pagina richiede l'autorizzazione. È possibile provare ad accedere o modificare le directory.
L'accesso a questa pagina richiede l'autorizzazione. È possibile provare a modificare le directory.
Microsoft Agent Framework supporta la creazione di agenti che usano i modelli Claude di Anthropic.
Come iniziare
Aggiungere i pacchetti NuGet necessari al progetto.
dotnet add package Microsoft.Agents.AI.Anthropic --prerelease
Se si usa Azure Foundry, aggiungere anche:
dotnet add package Anthropic.Foundry --prerelease
dotnet add package Azure.Identity
Impostazione
Variabili di ambiente
Configurare le variabili di ambiente necessarie per l'autenticazione Anthropic:
# Required for Anthropic API access
$env:ANTHROPIC_API_KEY="your-anthropic-api-key"
$env:ANTHROPIC_DEPLOYMENT_NAME="claude-haiku-4-5" # or your preferred model
È possibile ottenere una chiave API dalla console Anthropic.
Per Azure Foundry con chiave API
$env:ANTHROPIC_RESOURCE="your-foundry-resource-name" # Subdomain before .services.ai.azure.com
$env:ANTHROPIC_API_KEY="your-anthropic-api-key"
$env:ANTHROPIC_DEPLOYMENT_NAME="claude-haiku-4-5"
Per Azure Foundry con Azure CLI
$env:ANTHROPIC_RESOURCE="your-foundry-resource-name" # Subdomain before .services.ai.azure.com
$env:ANTHROPIC_DEPLOYMENT_NAME="claude-haiku-4-5"
Annotazioni
Quando si usa Azure Foundry con Azure CLI, assicurarsi di aver eseguito l'accesso az login e di avere accesso alla risorsa di Azure Foundry. Per altre informazioni, vedere la documentazione dell'interfaccia della riga di comando di Azure.
Creazione di un agente antropico
Creazione dell'agente di base (API pubblica di Anthropic)
Il modo più semplice per creare un agente Anthropic usando l'API pubblica:
var apiKey = Environment.GetEnvironmentVariable("ANTHROPIC_API_KEY");
var deploymentName = Environment.GetEnvironmentVariable("ANTHROPIC_DEPLOYMENT_NAME") ?? "claude-haiku-4-5";
AnthropicClient client = new() { APIKey = apiKey };
AIAgent agent = client.AsAIAgent(
model: deploymentName,
name: "HelpfulAssistant",
instructions: "You are a helpful assistant.");
// Invoke the agent and output the text result.
Console.WriteLine(await agent.RunAsync("Hello, how can you help me?"));
Uso di Anthropic in Azure Foundry con chiave API
Dopo aver configurato Anthropic in Azure Foundry, è possibile usarlo con l'autenticazione della chiave API:
var resource = Environment.GetEnvironmentVariable("ANTHROPIC_RESOURCE");
var apiKey = Environment.GetEnvironmentVariable("ANTHROPIC_API_KEY");
var deploymentName = Environment.GetEnvironmentVariable("ANTHROPIC_DEPLOYMENT_NAME") ?? "claude-haiku-4-5";
AnthropicClient client = new AnthropicFoundryClient(
new AnthropicFoundryApiKeyCredentials(apiKey, resource));
AIAgent agent = client.AsAIAgent(
model: deploymentName,
name: "FoundryAgent",
instructions: "You are a helpful assistant using Anthropic on Azure Foundry.");
Console.WriteLine(await agent.RunAsync("How do I use Anthropic on Foundry?"));
Uso di Anthropic in Azure Foundry con credenziali di Azure (esempio di credenziali CLI di Azure)
Per gli ambienti in cui sono preferite le credenziali di Azure:
var resource = Environment.GetEnvironmentVariable("ANTHROPIC_RESOURCE");
var deploymentName = Environment.GetEnvironmentVariable("ANTHROPIC_DEPLOYMENT_NAME") ?? "claude-haiku-4-5";
AnthropicClient client = new AnthropicFoundryClient(
new AnthropicAzureTokenCredential(new DefaultAzureCredential(), resource));
AIAgent agent = client.AsAIAgent(
model: deploymentName,
name: "FoundryAgent",
instructions: "You are a helpful assistant using Anthropic on Azure Foundry.");
Console.WriteLine(await agent.RunAsync("How do I use Anthropic on Foundry?"));
/// <summary>
/// Provides methods for invoking the Azure hosted Anthropic models using <see cref="TokenCredential"/> types.
/// </summary>
public sealed class AnthropicAzureTokenCredential(TokenCredential tokenCredential, string resourceName) : IAnthropicFoundryCredentials
{
/// <inheritdoc/>
public string ResourceName { get; } = resourceName;
/// <inheritdoc/>
public void Apply(HttpRequestMessage requestMessage)
{
requestMessage.Headers.Authorization = new AuthenticationHeaderValue(
scheme: "bearer",
parameter: tokenCredential.GetToken(new TokenRequestContext(scopes: ["https://ai.azure.com/.default"]), CancellationToken.None)
.Token);
}
}
Avviso
DefaultAzureCredential è utile per lo sviluppo, ma richiede un'attenta considerazione nell'ambiente di produzione. Nell'ambiente di produzione prendere in considerazione l'uso di credenziali specifiche ,ad esempio ManagedIdentityCredential, per evitare problemi di latenza, probe di credenziali indesiderate e potenziali rischi per la sicurezza dai meccanismi di fallback.
Suggerimento
Uso dell'agente
L'agente è uno standard AIAgent e supporta tutte le operazioni dell'agente standard.
Per altre informazioni su come eseguire e interagire con gli agenti, vedere le esercitazioni introduttive su Agent .
Prerequisiti
Installare il pacchetto Anthropic di Microsoft Agent Framework.
pip install agent-framework-anthropic --pre
Impostazione
Variabili di ambiente
Configurare le variabili di ambiente necessarie per l'autenticazione Anthropic:
# Required for Anthropic API access
ANTHROPIC_API_KEY="your-anthropic-api-key"
ANTHROPIC_CHAT_MODEL_ID="claude-sonnet-4-5-20250929" # or your preferred model
In alternativa, è possibile usare un .env file nella radice del progetto:
ANTHROPIC_API_KEY=your-anthropic-api-key
ANTHROPIC_CHAT_MODEL_ID=claude-sonnet-4-5-20250929
È possibile ottenere una chiave API dalla console Anthropic.
Come iniziare
Importare le classi necessarie da Agent Framework:
import asyncio
from agent_framework.anthropic import AnthropicClient
Creazione di un agente antropico
Creazione dell'agente di base
Il modo più semplice per creare un agente Anthropic:
async def basic_example():
# Create an agent using Anthropic
agent = AnthropicClient().as_agent(
name="HelpfulAssistant",
instructions="You are a helpful assistant.",
)
result = await agent.run("Hello, how can you help me?")
print(result.text)
Uso della configurazione esplicita
È possibile fornire una configurazione esplicita anziché basarsi sulle variabili di ambiente:
async def explicit_config_example():
agent = AnthropicClient(
model_id="claude-sonnet-4-5-20250929",
api_key="your-api-key-here",
).as_agent(
name="HelpfulAssistant",
instructions="You are a helpful assistant.",
)
result = await agent.run("What can you do?")
print(result.text)
Uso di Anthropic su Foundry
Dopo aver configurato Anthropic in Foundry, assicurarsi di avere impostato le variabili di ambiente seguenti:
ANTHROPIC_FOUNDRY_API_KEY="your-foundry-api-key"
ANTHROPIC_FOUNDRY_RESOURCE="your-foundry-resource-name"
Creare quindi l'agente come segue:
from agent_framework.anthropic import AnthropicClient
from anthropic import AsyncAnthropicFoundry
async def foundry_example():
agent = AnthropicClient(
anthropic_client=AsyncAnthropicFoundry()
).as_agent(
name="FoundryAgent",
instructions="You are a helpful assistant using Anthropic on Foundry.",
)
result = await agent.run("How do I use Anthropic on Foundry?")
print(result.text)
Nota: è necessario installare
anthropic>=0.74.0.
Funzionalità dell'agente
Strumenti per le funzioni
Equipaggiare l'agente con funzioni personalizzate:
from typing import Annotated
def get_weather(
location: Annotated[str, "The location to get the weather for."],
) -> str:
"""Get the weather for a given location."""
conditions = ["sunny", "cloudy", "rainy", "stormy"]
return f"The weather in {location} is {conditions[randint(0, 3)]} with a high of {randint(10, 30)}°C."
async def tools_example():
agent = AnthropicClient().as_agent(
name="WeatherAgent",
instructions="You are a helpful weather assistant.",
tools=get_weather, # Add tools to the agent
)
result = await agent.run("What's the weather like in Seattle?")
print(result.text)
Risposte in streaming
Ottenere risposte man mano che vengono generate per un'esperienza utente migliore:
async def streaming_example():
agent = AnthropicClient().as_agent(
name="WeatherAgent",
instructions="You are a helpful weather agent.",
tools=get_weather,
)
query = "What's the weather like in Portland and in Paris?"
print(f"User: {query}")
print("Agent: ", end="", flush=True)
async for chunk in agent.run(query, stream=True):
if chunk.text:
print(chunk.text, end="", flush=True)
print()
Strumenti ospitati
Gli agenti Anthropic supportano strumenti ospitati, come ricerca web, MCP (Model Context Protocol) ed esecuzione del codice.
from agent_framework.anthropic import AnthropicClient
async def hosted_tools_example():
client = AnthropicClient()
agent = client.as_agent(
name="DocsAgent",
instructions="You are a helpful agent for both Microsoft docs questions and general questions.",
tools=[
client.get_mcp_tool(
name="Microsoft Learn MCP",
url="https://learn.microsoft.com/api/mcp",
),
client.get_web_search_tool(),
],
max_tokens=20000,
)
result = await agent.run("Can you compare Python decorators with C# attributes?")
print(result.text)
Pensiero esteso (ragionamento)
Anthropic supporta funzionalità di pensiero esteso tramite la thinking funzionalità, che consente al modello di mostrare il processo di ragionamento:
from agent_framework import TextReasoningContent, UsageContent
from agent_framework.anthropic import AnthropicClient
async def thinking_example():
client = AnthropicClient()
agent = client.as_agent(
name="DocsAgent",
instructions="You are a helpful agent.",
tools=[client.get_web_search_tool()],
default_options={
"max_tokens": 20000,
"thinking": {"type": "enabled", "budget_tokens": 10000}
},
)
query = "Can you compare Python decorators with C# attributes?"
print(f"User: {query}")
print("Agent: ", end="", flush=True)
async for chunk in agent.run(query, stream=True):
for content in chunk.contents:
if isinstance(content, TextReasoningContent):
# Display thinking in a different color
print(f"\033[32m{content.text}\033[0m", end="", flush=True)
if isinstance(content, UsageContent):
print(f"\n\033[34m[Usage: {content.details}]\033[0m\n", end="", flush=True)
if chunk.text:
print(chunk.text, end="", flush=True)
print()
Competenze umane
Anthropic offre competenze gestite che estendono le funzionalità dell'agente, ad esempio la creazione di presentazioni di PowerPoint. Le competenze richiedono lo strumento Interprete del codice per funzionare:
from agent_framework import HostedFileContent
from agent_framework.anthropic import AnthropicClient
async def skills_example():
# Create client with skills beta flag
client = AnthropicClient(additional_beta_flags=["skills-2025-10-02"])
# Create an agent with the pptx skill enabled
# Skills require the Code Interpreter tool
agent = client.as_agent(
name="PresentationAgent",
instructions="You are a helpful agent for creating PowerPoint presentations.",
tools=client.get_code_interpreter_tool(),
default_options={
"max_tokens": 20000,
"thinking": {"type": "enabled", "budget_tokens": 10000},
"container": {
"skills": [{"type": "anthropic", "skill_id": "pptx", "version": "latest"}]
},
},
)
query = "Create a presentation about renewable energy with 5 slides"
print(f"User: {query}")
print("Agent: ", end="", flush=True)
files: list[HostedFileContent] = []
async for chunk in agent.run(query, stream=True):
for content in chunk.contents:
match content.type:
case "text":
print(content.text, end="", flush=True)
case "text_reasoning":
print(f"\033[32m{content.text}\033[0m", end="", flush=True)
case "hosted_file":
# Catch generated files
files.append(content)
print("\n")
# Download generated files
if files:
print("Generated files:")
for idx, file in enumerate(files):
file_content = await client.anthropic_client.beta.files.download(
file_id=file.file_id,
betas=["files-api-2025-04-14"]
)
filename = f"presentation-{idx}.pptx"
with open(filename, "wb") as f:
await file_content.write_to_file(f.name)
print(f"File {idx}: {filename} saved to disk.")
Esempio completo
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from random import randint
from typing import Annotated
from agent_framework import tool
from agent_framework.anthropic import AnthropicClient
"""
Anthropic Chat Agent Example
This sample demonstrates using Anthropic with an agent and a single custom tool.
"""
# NOTE: approval_mode="never_require" is for sample brevity. Use "always_require" in production; see samples/02-agents/tools/function_tool_with_approval.py and samples/02-agents/tools/function_tool_with_approval_and_sessions.py.
@tool(approval_mode="never_require")
def get_weather(
location: Annotated[str, "The location to get the weather for."],
) -> str:
"""Get the weather for a given location."""
conditions = ["sunny", "cloudy", "rainy", "stormy"]
return f"The weather in {location} is {conditions[randint(0, 3)]} with a high of {randint(10, 30)}°C."
async def non_streaming_example() -> None:
"""Example of non-streaming response (get the complete result at once)."""
print("=== Non-streaming Response Example ===")
agent = AnthropicClient(
).as_agent(
name="WeatherAgent",
instructions="You are a helpful weather agent.",
tools=get_weather,
)
query = "What's the weather like in Seattle?"
print(f"User: {query}")
result = await agent.run(query)
print(f"Result: {result}\n")
async def streaming_example() -> None:
"""Example of streaming response (get results as they are generated)."""
print("=== Streaming Response Example ===")
agent = AnthropicClient(
).as_agent(
name="WeatherAgent",
instructions="You are a helpful weather agent.",
tools=get_weather,
)
query = "What's the weather like in Portland and in Paris?"
print(f"User: {query}")
print("Agent: ", end="", flush=True)
async for chunk in agent.run(query, stream=True):
if chunk.text:
print(chunk.text, end="", flush=True)
print("\n")
async def main() -> None:
print("=== Anthropic Example ===")
await streaming_example()
await non_streaming_example()
if __name__ == "__main__":
asyncio.run(main())
Uso dell'agente
L'agente è uno standard Agent e supporta tutte le operazioni dell'agente standard.
Per altre informazioni su come eseguire e interagire con gli agenti, vedere le esercitazioni introduttive su Agent .