Condividi tramite


Orchestrazioni dei flussi di lavoro di Microsoft Agent Framework - Simultanee

L'orchestrazione simultanea consente a più agenti di lavorare sulla stessa attività in parallelo. Ogni agente elabora l'input in modo indipendente e i relativi risultati vengono raccolti e aggregati. Questo approccio è particolarmente adatto per scenari in cui prospettive o soluzioni diverse sono preziose, ad esempio brainstorming, ragionamento di insieme o sistemi di voto.

Orchestrazione simultanea

Contenuto dell'esercitazione

  • Come definire più agenti con competenze diverse
  • Come orchestrare questi agenti per lavorare simultaneamente in una singola attività
  • Come raccogliere ed elaborare i risultati

Nell'orchestrazione simultanea, più agenti lavorano contemporaneamente sulla stessa attività e in modo indipendente, fornendo prospettive diverse sullo stesso input.

Configurare il client OpenAI di Azure

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.Agents.Workflows;
using Microsoft.Extensions.AI;
using Microsoft.Agents.AI;

// 1) Set up the Azure OpenAI client
var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT") ??
    throw new InvalidOperationException("AZURE_OPENAI_ENDPOINT is not set.");
var deploymentName = Environment.GetEnvironmentVariable("AZURE_OPENAI_DEPLOYMENT_NAME") ?? "gpt-4o-mini";
var client = new AzureOpenAIClient(new Uri(endpoint), new AzureCliCredential())
    .GetChatClient(deploymentName)
    .AsIChatClient();

Definire gli agenti

Creare più agenti specializzati che funzioneranno contemporaneamente sulla stessa attività:

// 2) Helper method to create translation agents
static ChatClientAgent GetTranslationAgent(string targetLanguage, IChatClient chatClient) =>
    new(chatClient,
        $"You are a translation assistant who only responds in {targetLanguage}. Respond to any " +
        $"input by outputting the name of the input language and then translating the input to {targetLanguage}.");

// Create translation agents for concurrent processing
var translationAgents = (from lang in (string[])["French", "Spanish", "English"]
                         select GetTranslationAgent(lang, client));

Configurare l'orchestrazione simultanea

Compilare il flusso di lavoro usando AgentWorkflowBuilder per eseguire gli agenti in parallelo:

// 3) Build concurrent workflow
var workflow = AgentWorkflowBuilder.BuildConcurrent(translationAgents);

Eseguire il flusso di lavoro simultaneo e raccogliere i risultati

Eseguire il flusso di lavoro ed elaborare gli eventi da tutti gli agenti in esecuzione simultaneamente:

// 4) Run the workflow
var messages = new List<ChatMessage> { new(ChatRole.User, "Hello, world!") };

StreamingRun run = await InProcessExecution.StreamAsync(workflow, messages);
await run.TrySendMessageAsync(new TurnToken(emitEvents: true));

List<ChatMessage> result = new();
await foreach (WorkflowEvent evt in run.WatchStreamAsync().ConfigureAwait(false))
{
    if (evt is AgentRunUpdateEvent e)
    {
        Console.WriteLine($"{e.ExecutorId}: {e.Data}");
    }
    else if (evt is WorkflowOutputEvent outputEvt)
    {
        result = (List<ChatMessage>)outputEvt.Data!;
        break;
    }
}

// Display aggregated results from all agents
Console.WriteLine("===== Final Aggregated Results =====");
foreach (var message in result)
{
    Console.WriteLine($"{message.Role}: {message.Content}");
}

Output di esempio

French_Agent: English detected. Bonjour, le monde !
Spanish_Agent: English detected. ¡Hola, mundo!
English_Agent: English detected. Hello, world!

===== Final Aggregated Results =====
User: Hello, world!
Assistant: English detected. Bonjour, le monde !
Assistant: English detected. ¡Hola, mundo!
Assistant: English detected. Hello, world!

Concetti chiave

  • Esecuzione parallela: tutti gli agenti elaborano l'input simultaneamente e in modo indipendente
  • AgentWorkflowBuilder.BuildConcurrent(): crea un flusso di lavoro simultaneo da una raccolta di agenti
  • Aggregazione automatica: i risultati di tutti gli agenti vengono raccolti automaticamente nel risultato finale
  • Streaming di eventi: monitoraggio in tempo reale dell'avanzamento dell'agente tramite AgentRunUpdateEvent
  • Prospettive diverse: ogni agente porta la propria esperienza unica allo stesso problema

Gli agenti sono entità specializzate in grado di elaborare le attività. Qui definiamo tre agenti: un esperto di ricerca, un esperto di marketing e un esperto legale.

from agent_framework.azure import AzureChatClient

# 1) Create three domain agents using AzureChatClient
chat_client = AzureChatClient(credential=AzureCliCredential())

researcher = chat_client.create_agent(
    instructions=(
        "You're an expert market and product researcher. Given a prompt, provide concise, factual insights,"
        " opportunities, and risks."
    ),
    name="researcher",
)

marketer = chat_client.create_agent(
    instructions=(
        "You're a creative marketing strategist. Craft compelling value propositions and target messaging"
        " aligned to the prompt."
    ),
    name="marketer",
)

legal = chat_client.create_agent(
    instructions=(
        "You're a cautious legal/compliance reviewer. Highlight constraints, disclaimers, and policy concerns"
        " based on the prompt."
    ),
    name="legal",
)

Configurare l'orchestrazione simultanea

La ConcurrentBuilder classe consente di costruire un flusso di lavoro per eseguire più agenti in parallelo. L'elenco degli agenti viene passato come partecipanti.

from agent_framework import ConcurrentBuilder

# 2) Build a concurrent workflow
# Participants are either Agents (type of AgentProtocol) or Executors
workflow = ConcurrentBuilder().participants([researcher, marketer, legal]).build()

Eseguire il flusso di lavoro simultaneo e raccogliere i risultati

from agent_framework import ChatMessage, WorkflowOutputEvent

# 3) Run with a single prompt, stream progress, and pretty-print the final combined messages
output_evt: WorkflowOutputEvent  | None = None
async for event in workflow.run_stream("We are launching a new budget-friendly electric bike for urban commuters."):
    if isinstance(event, WorkflowOutputEvent):
        output_evt = event

if output_evt:
    print("===== Final Aggregated Conversation (messages) =====")
    messages: list[ChatMessage] | Any = output_evt.data
    for i, msg in enumerate(messages, start=1):
        name = msg.author_name if msg.author_name else "user"
        print(f"{'-' * 60}\n\n{i:02d} [{name}]:\n{msg.text}")

Output di esempio

Sample Output:

    ===== Final Aggregated Conversation (messages) =====
    ------------------------------------------------------------

    01 [user]:
    We are launching a new budget-friendly electric bike for urban commuters.
    ------------------------------------------------------------

    02 [researcher]:
    **Insights:**

    - **Target Demographic:** Urban commuters seeking affordable, eco-friendly transport;
        likely to include students, young professionals, and price-sensitive urban residents.
    - **Market Trends:** E-bike sales are growing globally, with increasing urbanization,
        higher fuel costs, and sustainability concerns driving adoption.
    - **Competitive Landscape:** Key competitors include brands like Rad Power Bikes, Aventon,
        Lectric, and domestic budget-focused manufacturers in North America, Europe, and Asia.
    - **Feature Expectations:** Customers expect reliability, ease-of-use, theft protection,
        lightweight design, sufficient battery range for daily city commutes (typically 25-40 miles),
        and low-maintenance components.

    **Opportunities:**

    - **First-time Buyers:** Capture newcomers to e-biking by emphasizing affordability, ease of
        operation, and cost savings vs. public transit/car ownership.
    ...
    ------------------------------------------------------------

    03 [marketer]:
    **Value Proposition:**
    "Empowering your city commute: Our new electric bike combines affordability, reliability, and
        sustainable design—helping you conquer urban journeys without breaking the bank."

    **Target Messaging:**

    *For Young Professionals:*
    ...
    ------------------------------------------------------------

    04 [legal]:
    **Constraints, Disclaimers, & Policy Concerns for Launching a Budget-Friendly Electric Bike for Urban Commuters:**

    **1. Regulatory Compliance**
    - Verify that the electric bike meets all applicable federal, state, and local regulations
        regarding e-bike classification, speed limits, power output, and safety features.
    - Ensure necessary certifications (e.g., UL certification for batteries, CE markings if sold internationally) are obtained.

    **2. Product Safety**
    - Include consumer safety warnings regarding use, battery handling, charging protocols, and age restrictions.

Avanzato: Esecutori agenti personalizzati

L'orchestrazione simultanea supporta executor personalizzati che incapsulano gli agenti con ulteriore logica. Ciò è utile quando è necessario un maggiore controllo sul modo in cui gli agenti vengono inizializzati e sul modo in cui elaborano le richieste:

Definire executor personalizzati dell'agente

from agent_framework import (
    AgentExecutorRequest,
    AgentExecutorResponse,
    ChatAgent,
    Executor,
    WorkflowContext,
    handler,
)

class ResearcherExec(Executor):
    agent: ChatAgent

    def __init__(self, chat_client: AzureChatClient, id: str = "researcher"):
        agent = chat_client.create_agent(
            instructions=(
                "You're an expert market and product researcher. Given a prompt, provide concise, factual insights,"
                " opportunities, and risks."
            ),
            name=id,
        )
        super().__init__(agent=agent, id=id)

    @handler
    async def run(self, request: AgentExecutorRequest, ctx: WorkflowContext[AgentExecutorResponse]) -> None:
        response = await self.agent.run(request.messages)
        full_conversation = list(request.messages) + list(response.messages)
        await ctx.send_message(AgentExecutorResponse(self.id, response, full_conversation=full_conversation))

class MarketerExec(Executor):
    agent: ChatAgent

    def __init__(self, chat_client: AzureChatClient, id: str = "marketer"):
        agent = chat_client.create_agent(
            instructions=(
                "You're a creative marketing strategist. Craft compelling value propositions and target messaging"
                " aligned to the prompt."
            ),
            name=id,
        )
        super().__init__(agent=agent, id=id)

    @handler
    async def run(self, request: AgentExecutorRequest, ctx: WorkflowContext[AgentExecutorResponse]) -> None:
        response = await self.agent.run(request.messages)
        full_conversation = list(request.messages) + list(response.messages)
        await ctx.send_message(AgentExecutorResponse(self.id, response, full_conversation=full_conversation))

Creare flussi di lavoro utilizzando gestori personalizzati

chat_client = AzureChatClient(credential=AzureCliCredential())

researcher = ResearcherExec(chat_client)
marketer = MarketerExec(chat_client)
legal = LegalExec(chat_client)

workflow = ConcurrentBuilder().participants([researcher, marketer, legal]).build()

Avanzato: Aggregatore personalizzato

Per impostazione predefinita, l'orchestrazione simultanea aggrega tutte le risposte dell'agente in un elenco di messaggi. È possibile eseguire l'override di questo comportamento con un aggregatore personalizzato che elabora i risultati in modo specifico:

Definire un aggregatore personalizzato

# Define a custom aggregator callback that uses the chat client to summarize
async def summarize_results(results: list[Any]) -> str:
    # Extract one final assistant message per agent
    expert_sections: list[str] = []
    for r in results:
        try:
            messages = getattr(r.agent_run_response, "messages", [])
            final_text = messages[-1].text if messages and hasattr(messages[-1], "text") else "(no content)"
            expert_sections.append(f"{getattr(r, 'executor_id', 'expert')}:\n{final_text}")
        except Exception as e:
            expert_sections.append(f"{getattr(r, 'executor_id', 'expert')}: (error: {type(e).__name__}: {e})")

    # Ask the model to synthesize a concise summary of the experts' outputs
    system_msg = ChatMessage(
        Role.SYSTEM,
        text=(
            "You are a helpful assistant that consolidates multiple domain expert outputs "
            "into one cohesive, concise summary with clear takeaways. Keep it under 200 words."
        ),
    )
    user_msg = ChatMessage(Role.USER, text="\n\n".join(expert_sections))

    response = await chat_client.get_response([system_msg, user_msg])
    # Return the model's final assistant text as the completion result
    return response.messages[-1].text if response.messages else ""

Creare un flusso di lavoro con l'aggregatore personalizzato

workflow = (
    ConcurrentBuilder()
    .participants([researcher, marketer, legal])
    .with_aggregator(summarize_results)
    .build()
)

output_evt: WorkflowOutputEvent | None = None
async for event in workflow.run_stream("We are launching a new budget-friendly electric bike for urban commuters."):
    if isinstance(event, WorkflowOutputEvent):
        output_evt = event

if output_evt:
    print("===== Final Consolidated Output =====")
    print(output_evt.data)

Esempio di output con aggregatore personalizzato

===== Final Consolidated Output =====
Urban e-bike demand is rising rapidly due to eco-awareness, urban congestion, and high fuel costs,
with market growth projected at a ~10% CAGR through 2030. Key customer concerns are affordability,
easy maintenance, convenient charging, compact design, and theft protection. Differentiation opportunities
include integrating smart features (GPS, app connectivity), offering subscription or leasing options, and
developing portable, space-saving designs. Partnering with local governments and bike shops can boost visibility.

Risks include price wars eroding margins, regulatory hurdles, battery quality concerns, and heightened expectations
for after-sales support. Accurate, substantiated product claims and transparent marketing (with range disclaimers)
are essential. All e-bikes must comply with local and federal regulations on speed, wattage, safety certification,
and labeling. Clear warranty, safety instructions (especially regarding batteries), and inclusive, accessible
marketing are required. For connected features, data privacy policies and user consents are mandatory.

Effective messaging should target young professionals, students, eco-conscious commuters, and first-time buyers,
emphasizing affordability, convenience, and sustainability. Slogan suggestion: "Charge Ahead—City Commutes Made
Affordable." Legal review in each target market, compliance vetting, and robust customer support policies are
critical before launch.

Concetti chiave

  • Esecuzione parallela: tutti gli agenti funzionano contemporaneamente e in modo indipendente sull'attività
  • Aggregazione dei risultati: i risultati vengono raccolti e possono essere elaborati dall'aggregatore predefinito o personalizzato
  • Prospettive diverse: ogni agente porta la propria esperienza unica allo stesso problema
  • Partecipanti Flessibili: È possibile utilizzare direttamente gli agenti o incapsularli in executor personalizzati
  • Elaborazione personalizzata: eseguire l'override dell'aggregatore predefinito per sintetizzare i risultati in modi specifici del dominio

Passaggi successivi