Esercitazione: Eseguire un modello TensorFlow in Python
Questa esercitazione illustra come usare un modello TensorFlow esportato localmente per classificare le immagini.
Nota
Questa esercitazione è valida solo per i modelli esportati da progetti di classificazione delle immagini "Generale (compatto)". Se sono stati esportati altri modelli, visitare il repository di codici di esempio.
- Installare Python 2.7+ o Python 3.6+.
- Installare pip.
Sarà quindi necessario installare anche i pacchetti seguenti:
pip install tensorflow
pip install pillow
pip install numpy
pip install opencv-python
Il file .zip scaricato dalla fase di esportazione contiene un file model.pb e un file labels.txt. Questi file rappresentano il modello sottoposto a training e le etichette di classificazione. Il primo passaggio consiste nel caricare il modello nel progetto. Aggiungere il codice seguente in un nuovo script Python.
import tensorflow as tf
import os
graph_def = tf.compat.v1.GraphDef()
labels = []
# These are set to the default names from exported models, update as needed.
filename = "model.pb"
labels_filename = "labels.txt"
# Import the TF graph
with tf.io.gfile.GFile(filename, 'rb') as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
# Create a list of labels.
with open(labels_filename, 'rt') as lf:
for l in lf:
labels.append(l.strip())
Per preparare un'immagine per la previsione, è necessario eseguire alcuni passaggi. Questi passaggi simulano la modifica dell'immagine eseguita durante il training.
Aprire il file e creare un'immagine nello spazio colore BGR
from PIL import Image import numpy as np import cv2 # Load from a file imageFile = "<path to your image file>" image = Image.open(imageFile) # Update orientation based on EXIF tags, if the file has orientation info. image = update_orientation(image) # Convert to OpenCV format image = convert_to_opencv(image)
Se l'immagine ha una dimensione maggiore di 1600 pixel, chiamare questo metodo (definito in un secondo momento).
image = resize_down_to_1600_max_dim(image)
Ritagliare il riquadro centrale più grande
h, w = image.shape[:2] min_dim = min(w,h) max_square_image = crop_center(image, min_dim, min_dim)
Ridimensionare il quadrato fino a 256x256
augmented_image = resize_to_256_square(max_square_image)
Ritagliare il centro per le dimensioni di input specifiche per il modello
# Get the input size of the model with tf.compat.v1.Session() as sess: input_tensor_shape = sess.graph.get_tensor_by_name('Placeholder:0').shape.as_list() network_input_size = input_tensor_shape[1] # Crop the center for the specified network_input_Size augmented_image = crop_center(augmented_image, network_input_size, network_input_size)
Definire funzioni helper. I passaggi precedenti usano le funzioni helper seguenti:
def convert_to_opencv(image): # RGB -> BGR conversion is performed as well. image = image.convert('RGB') r,g,b = np.array(image).T opencv_image = np.array([b,g,r]).transpose() return opencv_image def crop_center(img,cropx,cropy): h, w = img.shape[:2] startx = w//2-(cropx//2) starty = h//2-(cropy//2) return img[starty:starty+cropy, startx:startx+cropx] def resize_down_to_1600_max_dim(image): h, w = image.shape[:2] if (h < 1600 and w < 1600): return image new_size = (1600 * w // h, 1600) if (h > w) else (1600, 1600 * h // w) return cv2.resize(image, new_size, interpolation = cv2.INTER_LINEAR) def resize_to_256_square(image): h, w = image.shape[:2] return cv2.resize(image, (256, 256), interpolation = cv2.INTER_LINEAR) def update_orientation(image): exif_orientation_tag = 0x0112 if hasattr(image, '_getexif'): exif = image._getexif() if (exif != None and exif_orientation_tag in exif): orientation = exif.get(exif_orientation_tag, 1) # orientation is 1 based, shift to zero based and flip/transpose based on 0-based values orientation -= 1 if orientation >= 4: image = image.transpose(Image.TRANSPOSE) if orientation == 2 or orientation == 3 or orientation == 6 or orientation == 7: image = image.transpose(Image.FLIP_TOP_BOTTOM) if orientation == 1 or orientation == 2 or orientation == 5 or orientation == 6: image = image.transpose(Image.FLIP_LEFT_RIGHT) return image
Una volta preparata l'immagine come tensore, è possibile passarla al modello per una stima.
# These names are part of the model and cannot be changed.
output_layer = 'loss:0'
input_node = 'Placeholder:0'
with tf.compat.v1.Session() as sess:
try:
prob_tensor = sess.graph.get_tensor_by_name(output_layer)
predictions = sess.run(prob_tensor, {input_node: [augmented_image] })
except KeyError:
print ("Couldn't find classification output layer: " + output_layer + ".")
print ("Verify this a model exported from an Object Detection project.")
exit(-1)
Sarà quindi necessario mappare nuovamente alle etichette i risultati dell'esecuzione del tensore dell'immagine nel modello.
# Print the highest probability label
highest_probability_index = np.argmax(predictions)
print('Classified as: ' + labels[highest_probability_index])
print()
# Or you can print out all of the results mapping labels to probabilities.
label_index = 0
for p in predictions:
truncated_probablity = np.float64(np.round(p,8))
print (labels[label_index], truncated_probablity)
label_index += 1
Informazioni su come inserire il modello in un'applicazione per dispositivi mobili:
- Use exported Tensorflow model in an Android application (Usare il modello Tensorflow esportato in un'applicazione Android)
- Usare il modello CoreML esportato in un'applicazione iOS Swift
- Use exported CoreML model in an iOS application with Xamarin (Usare il modello CoreML esportato in un'applicazione iOS con Xamarin)