Condividi tramite


inline

Esplode un array di strutture in una tabella.

Questa funzione accetta una colonna di input contenente una matrice di struct e restituisce una nuova colonna in cui ogni struct nella matrice viene esploso in una riga separata.

Sintassi

from pyspark.sql import functions as sf

sf.inline(col)

Parametri

Parametro TIPO Description
col pyspark.sql.Column o il nome della colonna Colonna di input di valori da esplodere.

Restituzioni

pyspark.sql.Column: espressione generatore con il risultato esploso inline.

Esempi

Esempio 1: Uso inline con una singola colonna della matrice di struct

import pyspark.sql.functions as sf
df = spark.sql('SELECT ARRAY(NAMED_STRUCT("a",1,"b",2), NAMED_STRUCT("a",3,"b",4)) AS a')
df.select('*', sf.inline(df.a)).show()
+----------------+---+---+
|               a|  a|  b|
+----------------+---+---+
|[{1, 2}, {3, 4}]|  1|  2|
|[{1, 2}, {3, 4}]|  3|  4|
+----------------+---+---+

Esempio 2: Uso inline con un nome di colonna

import pyspark.sql.functions as sf
df = spark.sql('SELECT ARRAY(NAMED_STRUCT("a",1,"b",2), NAMED_STRUCT("a",3,"b",4)) AS a')
df.select('*', sf.inline('a')).show()
+----------------+---+---+
|               a|  a|  b|
+----------------+---+---+
|[{1, 2}, {3, 4}]|  1|  2|
|[{1, 2}, {3, 4}]|  3|  4|
+----------------+---+---+

Esempio 3: Uso inline con un alias

import pyspark.sql.functions as sf
df = spark.sql('SELECT ARRAY(NAMED_STRUCT("a",1,"b",2), NAMED_STRUCT("a",3,"b",4)) AS a')
df.select('*', sf.inline('a').alias("c1", "c2")).show()
+----------------+---+---+
|               a| c1| c2|
+----------------+---+---+
|[{1, 2}, {3, 4}]|  1|  2|
|[{1, 2}, {3, 4}]|  3|  4|
+----------------+---+---+

Esempio 4: Uso inline con più colonne della matrice di struct

import pyspark.sql.functions as sf
df = spark.sql('SELECT ARRAY(NAMED_STRUCT("a",1,"b",2), NAMED_STRUCT("a",3,"b",4)) AS a1, ARRAY(NAMED_STRUCT("c",5,"d",6), NAMED_STRUCT("c",7,"d",8)) AS a2')
df.select(
    '*', sf.inline('a1')
).select('*', sf.inline('a2')).show()
+----------------+----------------+---+---+---+---+
|              a1|              a2|  a|  b|  c|  d|
+----------------+----------------+---+---+---+---+
|[{1, 2}, {3, 4}]|[{5, 6}, {7, 8}]|  1|  2|  5|  6|
|[{1, 2}, {3, 4}]|[{5, 6}, {7, 8}]|  1|  2|  7|  8|
|[{1, 2}, {3, 4}]|[{5, 6}, {7, 8}]|  3|  4|  5|  6|
|[{1, 2}, {3, 4}]|[{5, 6}, {7, 8}]|  3|  4|  7|  8|
+----------------+----------------+---+---+---+---+

Esempio 5: Uso inline con una colonna di matrice di struct annidata

import pyspark.sql.functions as sf
df = spark.sql('SELECT NAMED_STRUCT("a",1,"b",2,"c",ARRAY(NAMED_STRUCT("c",3,"d",4), NAMED_STRUCT("c",5,"d",6))) AS s')
df.select('*', sf.inline('s.c')).show(truncate=False)
+------------------------+---+---+
|s                       |c  |d  |
+------------------------+---+---+
|{1, 2, [{3, 4}, {5, 6}]}|3  |4  |
|{1, 2, [{3, 4}, {5, 6}]}|5  |6  |
+------------------------+---+---+

Esempio 6: Uso di inline con una colonna contenente: matrice contenente valori Null, matrice vuota e Null

from pyspark.sql import functions as sf
df = spark.sql('SELECT * FROM VALUES (1,ARRAY(NAMED_STRUCT("a",1,"b",2), NULL, NAMED_STRUCT("a",3,"b",4))), (2,ARRAY()), (3,NULL) AS t(i,s)')
df.show(truncate=False)
+---+----------------------+
|i  |s                     |
+---+----------------------+
|1  |[{1, 2}, NULL, {3, 4}]|
|2  |[]                    |
|3  |NULL                  |
+---+----------------------+
df.select('*', sf.inline('s')).show(truncate=False)
+---+----------------------+----+----+
|i  |s                     |a   |b   |
+---+----------------------+----+----+
|1  |[{1, 2}, NULL, {3, 4}]|1   |2   |
|1  |[{1, 2}, NULL, {3, 4}]|NULL|NULL|
|1  |[{1, 2}, NULL, {3, 4}]|3   |4   |
+---+----------------------+----+----+