StandardTrainersCatalog.NaiveBayes Metodo
Definizione
Importante
Alcune informazioni sono relative alla release non definitiva del prodotto, che potrebbe subire modifiche significative prima della release definitiva. Microsoft non riconosce alcuna garanzia, espressa o implicita, in merito alle informazioni qui fornite.
Creare un NaiveBayesMulticlassTraineroggetto , che stima una destinazione multiclasse usando un modello Naive Bayes che supporta i valori delle funzionalità binarie.
public static Microsoft.ML.Trainers.NaiveBayesMulticlassTrainer NaiveBayes (this Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features");
static member NaiveBayes : Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers * string * string -> Microsoft.ML.Trainers.NaiveBayesMulticlassTrainer
<Extension()>
Public Function NaiveBayes (catalog As MulticlassClassificationCatalog.MulticlassClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features") As NaiveBayesMulticlassTrainer
Parametri
- labelColumnName
- String
Nome della colonna dell'etichetta.
- featureColumnName
- String
Nome della colonna di funzionalità.
Restituisce
Esempio
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class NaiveBayes
{
// Naive Bayes classifier is based on Bayes' theorem.
// It assumes independence among the presence of features in a class even
// though they may be dependent on each other. It is a multi-class trainer
// that accepts binary feature values of type float, i.e., feature values
// are either true or false. Specifically a feature value greater than zero
// is treated as true, zero or less is treated as false.
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion
.MapValueToKey(nameof(DataPoint.Label))
// Apply NaiveBayes multiclass trainer.
.Append(mlContext.MulticlassClassification.Trainers
.NaiveBayes());
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, " +
$"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 3
// Label: 2, Prediction: 2
// Label: 3, Prediction: 3
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Micro Accuracy: 0.88
// Macro Accuracy: 0.88
// Log Loss: 34.54
// Log Loss Reduction: -30.47
// Confusion table
// ||========================
// PREDICTED || 0 | 1 | 2 | Recall
// TRUTH ||========================
// 0 || 160 | 0 | 0 | 1.0000
// 1 || 0 | 145 | 32 | 0.8192
// 2 || 9 | 21 | 133 | 0.8160
// ||========================
// Precision ||0.9467 |0.8735 |0.8061 |
}
// Generates random uniform doubles in [-0.5, 0.5) range with labels
// 1, 2 or 3. For NaiveBayes values greater than zero are treated as true,
// zero or less are treated as false.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine(
$"Log Loss Reduction: {metrics.LogLossReduction:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}