Condividi tramite


Libreria client di Azure Rilevamento anomalie per JavaScript - versione 3.0.0-beta.5

AnomalyDetector di Azure L'API consente di monitorare e rilevare anomalie nei dati delle serie temporali con Machine Learning.

Collegamenti principali:

Concetti chiave

Fornisce AnomalyDetectorClient i metodi per il rilevamento anomalie:

  • detectEntireSeries - Rileva le anomalie in un intero set di dati
  • detectLastPoint - Rileva le anomalie nel punto dati più recente
  • detectChangePoint - Valuta il punteggio del punto di modifica di ogni punto della serie

Introduzione

Ambienti attualmente supportati

Per altre informazioni, vedere i criteri di supporto.

Prerequisiti

Se si usa l'interfaccia della riga di comando di Azure, sostituire <your-resource-group-name> e <your-resource-name> con i propri nomi univoci:

az cognitiveservices account create --kind AnomalyDetector --resource-group <your-resource-group-name> --name <your-resource-name>

Installare il pacchetto @azure/ai-anomaly-detector

Installare la libreria client di Azure Rilevamento anomalie per JavaScript con npm:

npm install @azure/ai-anomaly-detector

Creare e autenticare un oggetto AnomalyDetectorClient

Per creare un oggetto client per accedere all'API di Rilevamento anomalie, è necessario disporre endpoint della risorsa Rilevamento anomalie e di un oggetto credential. Il client Rilevamento anomalie può usare le credenziali di Azure Active Directory o una credenziale della chiave API per l'autenticazione.

È possibile trovare l'endpoint per la risorsa Rilevamento anomalie nel portale di Azure facendo clic Keys and Endpoint in Gestione risorse nel menu o usando il frammento di interfaccia della riga di comando di Azure seguente:

az cognitiveservices account show --name <your-resource-name> --resource-group <your-resource-group-name> --query "endpoint"

Uso di una chiave API

Usare il portale di Azure per passare alla risorsa Rilevamento anomalie e recuperare una chiave API facendo clic su Keys and Endpoint Gestione risorse oppure usando il frammento di interfaccia della riga di comando di Azure seguente:

Nota: A volte la chiave API viene definita "chiave di sottoscrizione" o "chiave API di sottoscrizione".

az cognitiveservices account keys list --resource-group <your-resource-group-name> --name <your-resource-name>

Dopo aver ottenuto una chiave API e un endpoint, è possibile usare la AzureKeyCredential classe per autenticare il client come indicato di seguito:

const { AnomalyDetectorClient, AzureKeyCredential } = require("@azure/ai-anomaly-detector");

const client = new AnomalyDetectorClient("<endpoint>", new AzureKeyCredential("<API key>"));

Uso di credenziali di Azure Active Directory

L'autenticazione della chiave API client viene usata nella maggior parte degli esempi, ma è anche possibile eseguire l'autenticazione con Azure Active Directory usando la [libreria di identità di Azure]. Per usare il provider DefaultAzureCredential illustrato di seguito o altri provider di credenziali forniti con Azure SDK, installare il @azure/identity pacchetto:

npm install @azure/identity

Sarà anche necessario registrare una nuova applicazione AAD e concedere l'accesso a Rilevamento anomalie assegnando il "Cognitive Services User" ruolo all'entità servizio (nota: altri ruoli, "Owner" ad esempio, non concedono le autorizzazioni necessarie, "Cognitive Services User" saranno sufficienti solo per eseguire gli esempi e il codice di esempio).

Impostare i valori dell'ID client, dell'ID tenant e del segreto client dell'applicazione AAD come variabili di ambiente: AZURE_CLIENT_ID, , AZURE_TENANT_IDAZURE_CLIENT_SECRET.

const { AnomalyDetectorClient } = require("@azure/ai-anomaly-detector");
const { DefaultAzureCredential } = require("@azure/identity");

const client = new AnomalyDetectorClient("<endpoint>", new DefaultAzureCredential());

Esempio

Rilevare i punti di modifica

Questo esempio illustra come rilevare i punti di modifica nell'intera serie.

const { AnomalyDetectorClient, TimeGranularity } = require("@azure/ai-anomaly-detector");
const { AzureKeyCredential } = require("@azure/core-auth");

// You will need to set this environment variables in .env file or edit the following values
const apiKey = process.env["API_KEY"] || "";
const endpoint = process.env["ENDPOINT"] || "";

async function main() {
  // create client
  const client = new AnomalyDetectorClient(endpoint, new AzureKeyCredential(apiKey));

  // construct request
  const request = {
    series: [
      { timestamp: new Date("2018-03-01T00:00:00Z"), value: 32858923 },
      { timestamp: new Date("2018-03-02T00:00:00Z"), value: 29615278 },
      { timestamp: new Date("2018-03-03T00:00:00Z"), value: 22839355 },
      { timestamp: new Date("2018-03-04T00:00:00Z"), value: 25948736 },
      { timestamp: new Date("2018-03-05T00:00:00Z"), value: 34139159 },
      { timestamp: new Date("2018-03-06T00:00:00Z"), value: 33843985 },
      { timestamp: new Date("2018-03-07T00:00:00Z"), value: 33637661 },
      { timestamp: new Date("2018-03-08T00:00:00Z"), value: 32627350 },
      { timestamp: new Date("2018-03-09T00:00:00Z"), value: 29881076 },
      { timestamp: new Date("2018-03-10T00:00:00Z"), value: 22681575 },
      { timestamp: new Date("2018-03-11T00:00:00Z"), value: 24629393 },
      { timestamp: new Date("2018-03-12T00:00:00Z"), value: 34010679 },
      { timestamp: new Date("2018-03-13T00:00:00Z"), value: 33893888 },
      { timestamp: new Date("2018-03-14T00:00:00Z"), value: 33760076 },
      { timestamp: new Date("2018-03-15T00:00:00Z"), value: 33093515 }
    ],
    granularity: TimeGranularity.daily
  };

  // get change point detect results
  const result = await client.detectChangePoint(request);
  const isChangePointDetected = result.isChangePoint.some((changePoint) => changePoint);

  if (isChangePointDetected) {
    console.log("Change points were detected from the series at index:");
    result.isChangePoint.forEach((changePoint, index) => {
      if (changePoint === true) {
        console.log(index);
      }
    });
  } else {
    console.log("There is no change point detected from the series.");
  }
  // output:
  // Change points were detected from the series at index:
  // 9
}

main().catch((err) => {
  console.error("The sample encountered an error:", err);
});

Altri esempi sono disponibili qui

Risoluzione dei problemi

Registrazione

L'abilitazione della registrazione consente di individuare informazioni utili sugli errori. Per visualizzare un log di richieste e risposte HTTP, impostare la variabile di ambiente AZURE_LOG_LEVEL su info. In alternativa, la registrazione può essere abilitata in fase di esecuzione chiamando setLogLevel in @azure/logger:

import { setLogLevel } from "@azure/logger";

setLogLevel("info");

Per istruzioni più dettagliate su come abilitare i log, è possibile esaminare la documentazione del pacchetto di @azure/logger.

Passaggi successivi

Per esempi dettagliati su come usare questa libreria, vedere la directory degli esempi .

Contributo

In questo progetto sono benvenuti i contributi e i suggerimenti. Per la maggior parte dei contenuti è necessario sottoscrivere un contratto di licenza di collaborazione (CLA, Contributor License Agreement) che stabilisce che l'utente ha il diritto di concedere, e di fatto concede a Microsoft i diritti d'uso del suo contributo. Per informazioni dettagliate, vedere https://cla.microsoft.com.

Quando si invia una richiesta pull, un bot CLA determina automaticamente se è necessario specificare un contratto CLA e completare la richiesta pull in modo appropriato (ad esempio con un'etichetta e un commento). Seguire le istruzioni specificate dal bot. È sufficiente eseguire questa operazione una sola volta per tutti i repository che usano il contratto CLA Microsoft.

Questo progetto ha adottato il Codice di comportamento di Microsoft per l'open source. Per altre informazioni, vedere Code of Conduct FAQ (Domande frequenti sul Codice di comportamento Open Source di Microsoft) oppure contattare opencode@microsoft.com per eventuali altre domande o commenti.

Per contribuire a questa libreria, leggere la guida ai contributi per altre informazioni su come compilare e testare il codice.