Comunicazioni tra driver multi stack ACX
In questo argomento viene fornito un riepilogo delle comunicazioni tra driver multi stack di Audio Class eXtensions (ACX).
Per informazioni generali su ACX, vedere Panoramica delle estensioni della classe audio ACX e Riepilogo degli oggetti ACX.
Per informazioni di base sulle destinazioni ACX, vedere Destinazioni ACX e sincronizzazione dei driver e IRP di richiesta di AX I/O.
Driver audio a stack singolo
I driver della classe audio Legacy PortCls e KS supportano solo i driver audio "single stack". Il framework audio legacy comunica e interfaccia con un solo driver miniport. Spetta al driver miniport gestire la comunicazione e la sincronizzazione con altri stack di driver quando necessario.
ACX supporta completamente driver audio a stack singolo. Gli sviluppatori audio possono sostituire i portcl e il driver miniport KS correnti con un driver basato su ACX mantenendo lo stesso comportamento rispetto ad altri stack. Anche se il sottosistema audio usa stack multi-audio, un approccio migliore consiste nell'usare il supporto multistack in ACX e consentire ad ACX di sincronizzare tutti questi stack insieme, come descritto nella sezione successiva di questo argomento.
Driver audio multi stack - componentizzazione
È molto comune che il percorso audio attraversi più componenti hardware gestiti da diversi stack di driver per creare un'esperienza audio completa. È tipico che un sistema disponga della funzionalità DSP, CODEC e AMP implementata da diversi fornitori di tecnologie audio, come illustrato nel diagramma seguente.
In un'architettura multistack senza uno standard ben definito, ogni fornitore è costretto a definire la propria interfaccia proprietaria e il protocollo di comunicazione. È un obiettivo di ACX per facilitare lo sviluppo di driver audio multistack prendendo la proprietà della sincronizzazione tra questi stack e fornendo un semplice modello utilizzabile per i driver comunicano tra loro.
Usando ACX, la progettazione hardware DSP, CODEC e AMP di sistema di esempio può essere supportata con l'architettura software seguente.
Si noti che è possibile usare qualsiasi tipo di componente anziché DSP, CODEC e AMP, in quanto ACX non dipende da alcun tipo di componente specifico o da disposizioni specifiche dei componenti.
I driver di terze parti comunicano tra loro tramite ACX con un protocollo ben definito. Un vantaggio di questo approccio è che un singolo stack può essere sostituito con un altro fornitore diverso senza richiedere modifiche agli stack software adiacenti. Uno degli obiettivi principali del framework ACX (Audio Class Extensions) è quello di semplificare lo sforzo necessario per sviluppare multistack driver audio assemblati da componenti di fornitori diversi.
Esempio di destinazioni ACX - Circuito
Questo codice di esempio illustra l'uso di AcxTargetCircuit e AcxTargetCircuitGetGetWdfIoTarget per comunicare con un circuito remoto esposto da uno stack diverso. Per altre informazioni sui circuiti ACX, vedere acxcircuit.h.
Questo aggregatore abbastanza complesso individua i circuiti e quindi crea un ioTarget usando AcxTargetCircuitGetGetWdfIoTarget. Imposta quindi le opzioni di invio WDF personalizzate e invia in modo asincrono la richiesta. Infine, controlla lo stato dell'invio per confermare che la richiesta è stata inviata.
NTSTATUS
Aggregator_SendModuleCommand(
_In_ PAGGREGATOR_RENDER_CIRCUIT_CONTEXT CircuitCtx,
_In_ ACX_REQUEST_PARAMETERS Params,
_Out_ ULONG_PTR * OutSize
)
{
NTSTATUS status = STATUS_NOT_SUPPORTED;
PKSAUDIOMODULE_PROPERTY moduleProperty = nullptr;
ULONG aggregationDeviceIndex = 0;
PLIST_ENTRY ple;
*OutSize = 0;
moduleProperty = CONTAINING_RECORD(Params.Parameters.Property.Control, KSAUDIOMODULE_PROPERTY, ClassId);;
aggregationDeviceIndex = AUDIOMODULE_GET_AGGDEVICEID(moduleProperty->InstanceId);
ple = CircuitCtx->AggregatorCircuit->AggregatorEndpoint->AudioPaths[aggregationDeviceIndex]->TargetCircuitList.Flink;
while (ple != &CircuitCtx->AggregatorCircuit->AggregatorEndpoint->AudioPaths[aggregationDeviceIndex]->TargetCircuitList)
{
PAUDIO_CIRCUIT circuit = (PAUDIO_CIRCUIT)CONTAINING_RECORD(ple, AUDIO_CIRCUIT, ListEntry);
if (circuit->Modules)
{
for(ULONG i = 0; i < circuit->Modules->Count; i++)
{
PACX_AUDIOMODULE_DESCRIPTOR descriptor = ((PACX_AUDIOMODULE_DESCRIPTOR)(circuit->Modules + 1) + i);
// we've identified which aggregation device this call is targeting,
// now locate which circuit implements this module. Within an aggregated device,
// the module class id + instance id must uniquely identify a module. There should
// never be duplicates.
if (IsEqualGUIDAligned(descriptor->ClassId, moduleProperty->ClassId) &&
descriptor->InstanceId == moduleProperty->InstanceId)
{
WDFREQUEST request = NULL;
WDF_REQUEST_SEND_OPTIONS sendOptions;
WDF_OBJECT_ATTRIBUTES attributes;
WDFIOTARGET ioTarget;
// We've now identified which aggregated device this call is targeting.
// The cached module information contains the ID adjusted with the aggregation device
// index. remove the aggregation device index before forwarding the call to the aggregated circuit.
moduleProperty->InstanceId = AUDIOMODULE_GET_INSTANCEID(moduleProperty->InstanceId);
ioTarget = AcxTargetCircuitGetWdfIoTarget(circuit->AcxTargetCircuit);
WDF_OBJECT_ATTRIBUTES_INIT(&attributes);
attributes.ParentObject = CircuitCtx->AggregatorCircuit->Circuit;
status = WdfRequestCreate(&attributes, ioTarget, &request);
if (!NT_SUCCESS(status))
{
goto exit;
}
status = AcxTargetCircuitFormatRequestForProperty(circuit->AcxTargetCircuit, request, &Params);
if (!NT_SUCCESS(status))
{
goto exit;
}
WDF_REQUEST_SEND_OPTIONS_INIT(&sendOptions, WDF_REQUEST_SEND_OPTION_SYNCHRONOUS);
WDF_REQUEST_SEND_OPTIONS_SET_TIMEOUT(&sendOptions, WDF_REL_TIMEOUT_IN_SEC(REQUEST_TIMEOUT_SECONDS));
// Whether WdfRequestSend succeeds or fails, we return the status & information, so
// there's no need to inspect the result.
WdfRequestSend(request, ioTarget, &sendOptions);
status = WdfRequestGetStatus(request);
*OutSize = WdfRequestGetInformation(request);
WdfObjectDelete(request);
goto exit;
}
}
}
ple = ple->Flink;
}
status = STATUS_SUCCESS;
exit:
return status;
}
Esempio di comunicazioni di destinazioni ACX - Pin
Questo codice di esempio mostra l'uso di AcxTargetPin per comunicare con il pin di un circuito remoto esposto da uno stack diverso. Per altre informazioni sul pin ACX, vedere acxpin.h.
Seleziona gli ultimi elementi Volume e Disattiva audio presenti entrambi nello stesso circuito nel percorso endpoint.
NTSTATUS FindDownstreamVolumeMute(
_In_ ACXCIRCUIT Circuit,
_In_ ACXTARGETCIRCUIT TargetCircuit
)
{
NTSTATUS status;
PDSP_CIRCUIT_CONTEXT circuitCtx;
ACX_REQUEST_PARAMETERS params;
WDF_REQUEST_SEND_OPTIONS sendOptions;
WDF_OBJECT_ATTRIBUTES attributes;
WDF_REQUEST_REUSE_PARAMS reuseParams;
circuitCtx = GetDspCircuitContext(Circuit);
//
// Note on behavior: This search algorithm will select the last Volume and Mute elements that are both
// present in the same circuit in the Endpoint Path.
// This logic could be updated to select the last Volume and Mute elements, or the first or last
// Volume or the first or last Mute element.
//
//
// First look through target's pins to determine if there's another circuit downstream.
// If there is, we'll look at that circuit for volume/mute.
//
for (ULONG pinIndex = 0; pinIndex < AcxTargetCircuitGetPinsCount(TargetCircuit); ++pinIndex)
{
ACXTARGETPIN targetPin = AcxTargetCircuitGetTargetPin(TargetCircuit, pinIndex);
ULONG targetPinFlow = 0;
ACX_REQUEST_PARAMETERS_INIT_PROPERTY(¶ms,
KSPROPSETID_Pin,
KSPROPERTY_PIN_DATAFLOW,
AcxPropertyVerbGet,
AcxItemTypePin,
AcxTargetPinGetId(targetPin),
nullptr, 0,
&targetPinFlow,
sizeof(targetPinFlow));
RETURN_NTSTATUS_IF_FAILED(SendProperty(targetPin, ¶ms, nullptr));
//
// Searching for the downstream pins. For Render, these are the dataflow out pins
//
if (circuitCtx->IsRenderCircuit && targetPinFlow != KSPIN_DATAFLOW_OUT)
{
continue;
}
else if (!circuitCtx->IsRenderCircuit && targetPinFlow != KSPIN_DATAFLOW_IN)
{
continue;
}
// Get the target pin's physical connection. We'll do this twice: first to get size and allocate, second to get the connection
PKSPIN_PHYSICALCONNECTION pinConnection = nullptr;
auto connection_free = scope_exit([&pinConnection]()
{
if (pinConnection)
{
ExFreePool(pinConnection);
pinConnection = nullptr;
}
});
ULONG pinConnectionSize = 0;
ULONG_PTR info = 0;
for (ULONG i = 0; i < 2; ++i)
{
ACX_REQUEST_PARAMETERS_INIT_PROPERTY(¶ms,
KSPROPSETID_Pin,
KSPROPERTY_PIN_PHYSICALCONNECTION,
AcxPropertyVerbGet,
AcxItemTypePin,
AcxTargetPinGetId(targetPin),
nullptr, 0,
pinConnection,
pinConnectionSize);
status = SendProperty(targetPin, ¶ms, &info);
if (status == STATUS_BUFFER_OVERFLOW)
{
// Pin connection already allocated, so how did this fail?
RETURN_NTSTATUS_IF_TRUE(pinConnection != nullptr, status);
pinConnectionSize = (ULONG)info;
pinConnection = (PKSPIN_PHYSICALCONNECTION)ExAllocatePool2(POOL_FLAG_NON_PAGED, pinConnectionSize, DRIVER_TAG);
// RETURN_NTSTATUS_IF_NULL_ALLOC causes compile errors
RETURN_NTSTATUS_IF_TRUE(pinConnection == nullptr, STATUS_INSUFFICIENT_RESOURCES);
}
else if (!NT_SUCCESS(status))
{
// There are no more connected circuits. Continue with processing this circuit.
break;
}
}
if (!NT_SUCCESS(status))
{
// There are no more connected circuits. Continue handling this circuit.
break;
}
ACXTARGETCIRCUIT nextTargetCircuit;
RETURN_NTSTATUS_IF_FAILED(CreateTargetCircuit(Circuit, pinConnection, pinConnectionSize, &nextTargetCircuit));
auto circuit_free = scope_exit([&nextTargetCircuit]()
{
if (nextTargetCircuit)
{
WdfObjectDelete(nextTargetCircuit);
nextTargetCircuit = nullptr;
}
});
RETURN_NTSTATUS_IF_FAILED_UNLESS_ALLOWED(FindDownstreamVolumeMute(Circuit, nextTargetCircuit), STATUS_NOT_FOUND);
if (circuitCtx->TargetVolumeMuteCircuit == nextTargetCircuit)
{
// The nextTargetCircuit is the owner of the volume/mute target elements.
// We will delete it when the pin is disconnected.
circuit_free.release();
// We found volume/mute. Return.
return STATUS_SUCCESS;
}
// There's only one downstream pin on the current targetcircuit, and we just processed it.
break;
}
//
// Search the target circuit for a volume or mute element.
// This sample code doesn't support downstream audioengine elements.
//
for (ULONG elementIndex = 0; elementIndex < AcxTargetCircuitGetElementsCount(TargetCircuit); ++elementIndex)
{
ACXTARGETELEMENT targetElement = AcxTargetCircuitGetTargetElement(TargetCircuit, elementIndex);
GUID elementType = AcxTargetElementGetType(targetElement);
if (IsEqualGUID(elementType, KSNODETYPE_VOLUME) &&
circuitCtx->TargetVolumeHandler == nullptr)
{
// Found Volume
circuitCtx->TargetVolumeHandler = targetElement;
}
if (IsEqualGUID(elementType, KSNODETYPE_MUTE) &&
circuitCtx->TargetMuteHandler == nullptr)
{
// Found Mute
circuitCtx->TargetMuteHandler = targetElement;
}
}
if (circuitCtx->TargetVolumeHandler && circuitCtx->TargetMuteHandler)
{
circuitCtx->TargetVolumeMuteCircuit = TargetCircuit;
return STATUS_SUCCESS;
}
//
// If we only found one of volume or mute, keep searching for both
//
if (circuitCtx->TargetVolumeHandler || circuitCtx->TargetMuteHandler)
{
circuitCtx->TargetMuteHandler = circuitCtx->TargetVolumeHandler = nullptr;
}
return STATUS_NOT_FOUND;
}
Esempio di comunicazioni di destinazioni ACX - Stream
Questo codice di esempio mostra l'uso di AcxTargetStream per comunicare con il flusso di un circuito remoto. Per altre informazioni sui Flussi ACX, vedere acxstreams.h.
NTSTATUS status;
PRENDER_DEVICE_CONTEXT devCtx;
WDF_OBJECT_ATTRIBUTES attributes;
ACXSTREAM stream;
STREAM_CONTEXT * streamCtx;
ACXELEMENT elements[2] = {0};
ACX_ELEMENT_CONFIG elementCfg;
ELEMENT_CONTEXT * elementCtx;
ACX_STREAM_CALLBACKS streamCallbacks;
ACX_RT_STREAM_CALLBACKS rtCallbacks;
CRenderStreamEngine * streamEngine = NULL;
PAGED_CODE();
UNREFERENCED_PARAMETER(Pin);
UNREFERENCED_PARAMETER(SignalProcessingMode);
UNREFERENCED_PARAMETER(VarArguments);
// This unit-test added support for RAW and DEFAULT.
ASSERT(IsEqualGUID(*SignalProcessingMode, AUDIO_SIGNALPROCESSINGMODE_RAW) ||
IsEqualGUID(*SignalProcessingMode, AUDIO_SIGNALPROCESSINGMODE_DEFAULT));
devCtx = GetRenderDeviceContext(Device);
ASSERT(devCtx != NULL);
//
// Init streaming callbacks.
//
ACX_STREAM_CALLBACKS_INIT(&streamCallbacks);
streamCallbacks.EvtAcxStreamPrepareHardware = EvtStreamPrepareHardware;
streamCallbacks.EvtAcxStreamReleaseHardware = EvtStreamReleaseHardware;
streamCallbacks.EvtAcxStreamRun = EvtStreamRun;
streamCallbacks.EvtAcxStreamPause = EvtStreamPause;
streamCallbacks.EvtAcxStreamAssignDrmContentId = EvtStreamAssignDrmContentId;
status = AcxStreamInitAssignAcxStreamCallbacks(StreamInit, &streamCallbacks);
if (!NT_SUCCESS(status))
{
ASSERT(FALSE);
goto exit;
}
//
// Init RT streaming callbacks.
//
ACX_RT_STREAM_CALLBACKS_INIT(&rtCallbacks);
rtCallbacks.EvtAcxStreamGetHwLatency = EvtStreamGetHwLatency;
rtCallbacks.EvtAcxStreamAllocateRtPackets = EvtStreamAllocateRtPackets;
rtCallbacks.EvtAcxStreamFreeRtPackets = EvtStreamFreeRtPackets;
rtCallbacks.EvtAcxStreamSetRenderPacket = R_EvtStreamSetRenderPacket;
rtCallbacks.EvtAcxStreamGetCurrentPacket = EvtStreamGetCurrentPacket;
rtCallbacks.EvtAcxStreamGetPresentationPosition = EvtStreamGetPresentationPosition;
status = AcxStreamInitAssignAcxRtStreamCallbacks(StreamInit, &rtCallbacks);
if (!NT_SUCCESS(status))
{
ASSERT(FALSE);
goto exit;
}
//
// Create the stream.
//
WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&attributes, STREAM_CONTEXT);
attributes.EvtCleanupCallback = EvtStreamCleanup;
attributes.EvtDestroyCallback = EvtStreamDestroy;
status = AcxRtStreamCreate(Device, Circuit, &attributes, &StreamInit, &stream);
if (!NT_SUCCESS(status))
{
ASSERT(FALSE);
goto exit;
}
// START-TESTING: inverted create-stream sequence.
{
ACXSTREAMBRIDGE bridge = NULL;
ACXPIN bridgePin = NULL;
ACXTARGETSTREAM targetStream = NULL;
ACX_STREAM_BRIDGE_CONFIG bridgeCfg;
ACX_STREAM_BRIDGE_CONFIG_INIT(&bridgeCfg);
bridgeCfg.InModesCount = 0; // no in-modes. this stream-bridge is manually managed.
bridgeCfg.InModes = NULL;
bridgeCfg.OutMode = NULL; // no mode, i.e., default (1st) and raw (2nd).
bridgeCfg.Flags |= AcxStreamBridgeInvertChangeStateSequence;
WDF_OBJECT_ATTRIBUTES_INIT(&attributes);
attributes.ParentObject = WdfGetDriver(); // bridge is deleted by driver obj in case of error.
status = AcxStreamBridgeCreate(Circuit, &attributes, &bridgeCfg, &bridge);
if (!NT_SUCCESS(status))
{
ASSERT(FALSE);
goto exit;
}
...
status = AcxStreamBridgeAddStream(bridge, stream);
if (!NT_SUCCESS(status))
{
ASSERT(FALSE);
goto exit;
}
// Get the Target Stream
targetStream = AcxStreamBridgeGetTargetStream(bridge, stream);
if (targetStream == NULL)
{
ASSERT(FALSE);
goto exit;
}
Esempio di comunicazione delle destinazioni ACX - Elemento
Questo codice di esempio mostra l'uso di AcxTargetElement per comunicare con l'elemento di un circuito. Per altre informazioni sulle destinazioni ACX, vedere acxtargets.h.
_In_ ACXCIRCUIT Circuit,
_In_ ACXTARGETCIRCUIT TargetCircuit
...
//
// Search the target circuit for a volume or mute element.
// This sample code doesn't support downstream audioengine elements.
//
for (ULONG elementIndex = 0; elementIndex < AcxTargetCircuitGetElementsCount(TargetCircuit); ++elementIndex)
{
ACXTARGETELEMENT targetElement = AcxTargetCircuitGetTargetElement(TargetCircuit, elementIndex);
GUID elementType = AcxTargetElementGetType(targetElement);
if (IsEqualGUID(elementType, KSNODETYPE_VOLUME) &&
circuitCtx->TargetVolumeHandler == nullptr)
{
// Found Volume
circuitCtx->TargetVolumeHandler = targetElement;
}
if (IsEqualGUID(elementType, KSNODETYPE_MUTE) &&
circuitCtx->TargetMuteHandler == nullptr)
{
// Found Mute
circuitCtx->TargetMuteHandler = targetElement;
}
}
Vedi anche
Panoramica delle estensioni della classe audio ACX
Documentazione di riferimento su ACX
IRP della richiesta di I/O ACX