Questa breve esercitazione illustra come usare Windows ML per eseguire il modello di classificazione delle immagini ResNet-50 in Windows, illustrando in dettaglio i passaggi di acquisizione e pre-elaborazione dei modelli. L'implementazione prevede la selezione dinamica dei provider di esecuzione per ottimizzare le prestazioni di inferenza.
Il modello ResNet-50 è un modello PyTorch destinato alla classificazione delle immagini.
In questa esercitazione si acquisirà il modello ResNet-50 da Hugging Face e lo si convertirà in formato QDQ ONNX usando AI Toolkit.
Si caricherà quindi il modello, preparerai i tensori di input ed eseguirai l'inferenza usando le API di Windows ML, inclusi i passaggi di post-elaborazione per applicare softmax e recuperare le stime principali.
Acquisizione del modello e pre-elaborazione
È possibile acquisire ResNet-50 da Hugging Face (la piattaforma in cui la community di ML collabora su modelli, set di dati e app). Si convertirà ResNet-50 in formato QDQ ONNX usando AI Toolkit (vedere Convertire modelli in formato ONNX per altre informazioni).
L'obiettivo di questo codice di esempio è sfruttare il runtime di Windows ML per eseguire le principali operazioni.
Il runtime di Windows ML farà:
- Caricare il modello.
- Selezionare dinamicamente il provider di esecuzione fornito da IHV (EP) preferito per il modello e scaricare il relativo EP da Microsoft Store, su richiesta.
- Eseguire l'inferenza sul modello usando l'EP.
Per informazioni di riferimento sulle API, vedere OrtSessionOptions e la classe ExecutionProviderCatalog .
// Create a new instance of EnvironmentCreationOptions
EnvironmentCreationOptions envOptions = new()
{
logId = "ResnetDemo",
logLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_ERROR
};
// Pass the options by reference to CreateInstanceWithOptions
OrtEnv ortEnv = OrtEnv.CreateInstanceWithOptions(ref envOptions);
// Use Windows ML to download and register Execution Providers
var catalog = Microsoft.Windows.AI.MachineLearning.ExecutionProviderCatalog.GetDefault();
Console.WriteLine("Ensuring and registering execution providers...");
await catalog.EnsureAndRegisterCertifiedAsync();
//Create Onnx session
Console.WriteLine("Creating session ...");
var sessionOptions = new SessionOptions();
// Set EP Selection Policy
sessionOptions.SetEpSelectionPolicy(ExecutionProviderDevicePolicy.MIN_OVERALL_POWER);
winrt::init_apartment();
// Initialize ONNX Runtime
Ort::Env env(ORT_LOGGING_LEVEL_ERROR, "CppConsoleDesktop");
// Use Windows ML to download and register Execution Providers
auto catalog = winrt::Microsoft::Windows::AI::MachineLearning::ExecutionProviderCatalog::GetDefault();
catalog.EnsureAndRegisterCertifiedAsync().get();
// Set the auto EP selection policy
Ort::SessionOptions sessionOptions;
sessionOptions.SetEpSelectionPolicy(OrtExecutionProviderDevicePolicy_MIN_OVERALL_POWER);
# In your application code
import subprocess
import json
import sys
from pathlib import Path
import traceback
import onnxruntime as ort
_winml_instance = None
class WinML:
def __new__(cls, *args, **kwargs):
global _winml_instance
if _winml_instance is None:
_winml_instance = super(WinML, cls).__new__(cls, *args, **kwargs)
_winml_instance._initialized = False
return _winml_instance
def __init__(self):
if self._initialized:
return
self._initialized = True
self._fix_winrt_runtime()
from winui3.microsoft.windows.applicationmodel.dynamicdependency.bootstrap import (
InitializeOptions,
initialize
)
import winui3.microsoft.windows.ai.machinelearning as winml
self._win_app_sdk_handle = initialize(options=InitializeOptions.ON_NO_MATCH_SHOW_UI)
self._win_app_sdk_handle.__enter__()
catalog = winml.ExecutionProviderCatalog.get_default()
self._providers = catalog.find_all_providers()
self._ep_paths : dict[str, str] = {}
for provider in self._providers:
provider.ensure_ready_async().get()
if provider.library_path == '':
continue
self._ep_paths[provider.name] = provider.library_path
self._registered_eps : list[str] = []
def __del__(self):
self._providers = None
self._win_app_sdk_handle.__exit__(None, None, None)
def _fix_winrt_runtime(self):
"""
This function removes the msvcp140.dll from the winrt-runtime package.
So it does not cause issues with other libraries.
"""
from importlib import metadata
site_packages_path = Path(str(metadata.distribution('winrt-runtime').locate_file('')))
dll_path = site_packages_path / 'winrt' / 'msvcp140.dll'
if dll_path.exists():
dll_path.unlink()
def register_execution_providers_to_ort(self) -> list[str]:
import onnxruntime as ort
for name, path in self._ep_paths.items():
if name not in self._registered_eps:
try:
ort.register_execution_provider_library(name, path)
self._registered_eps.append(name)
except Exception as e:
print(f"Failed to register execution provider {name}: {e}", file=sys.stderr)
traceback.print_exc()
return self._registered_eps
WinML().register_execution_providers_to_ort()
session_options = ort.SessionOptions()
session_options.set_provider_selection_policy(ort.OrtExecutionProviderDevicePolicy.MAX_EFFICIENCY)
Compilazione EP
Se il modello non è già compilato per l'EP (che può variare a seconda del dispositivo), il modello deve prima essere compilato in base a tale EP. Si tratta di un processo monouso. Il codice di esempio seguente lo gestisce compilando il modello alla prima esecuzione e quindi archiviandolo in locale. Le esecuzioni successive del codice prelevano la versione compilata ed eseguono tale versione; con conseguente inferenza rapida ottimizzata.
Per informazioni di riferimento sulle API, vedere Ort::ModelCompilationOptions struct, Ort::Status struct e Ort::CompileModel.
// Prepare paths
string executableFolder = Path.GetDirectoryName(Assembly.GetEntryAssembly()!.Location)!;
string labelsPath = Path.Combine(executableFolder, "ResNet50Labels.txt");
string imagePath = Path.Combine(executableFolder, "dog.jpg");
// TODO: Please use AITK Model Conversion tool to download and convert Resnet, and paste the converted path here
string modelPath = @"";
string compiledModelPath = @"";
// Compile the model if not already compiled
bool isCompiled = File.Exists(compiledModelPath);
if (!isCompiled)
{
Console.WriteLine("No compiled model found. Compiling model ...");
using (var compileOptions = new OrtModelCompilationOptions(sessionOptions))
{
compileOptions.SetInputModelPath(modelPath);
compileOptions.SetOutputModelPath(compiledModelPath);
compileOptions.CompileModel();
isCompiled = File.Exists(compiledModelPath);
if (isCompiled)
{
Console.WriteLine("Model compiled successfully!");
}
else
{
Console.WriteLine("Failed to compile the model. Will use original model.");
}
}
}
else
{
Console.WriteLine("Found precompiled model.");
}
var modelPathToUse = isCompiled ? compiledModelPath : modelPath;
// Prepare paths for model and labels
std::filesystem::path executableFolder = ResnetModelHelper::GetExecutablePath().parent_path();
std::filesystem::path labelsPath = executableFolder / "ResNet50Labels.txt";
std::filesystem::path dogImagePath = executableFolder / "dog.jpg";
// TODO: use AITK Model Conversion tool to get resnet and paste the path here
std::filesystem::path modelPath = L"";
std::filesystem::path compiledModelPath = L"";
bool isCompiledModelAvailable = std::filesystem::exists(compiledModelPath);
if (isCompiledModelAvailable)
{
std::cout << "Using compiled model: " << compiledModelPath << std::endl;
}
else
{
std::cout << "No compiled model found, attempting to create compiled model at " << compiledModelPath
<< std::endl;
Ort::ModelCompilationOptions compile_options(env, sessionOptions);
compile_options.SetInputModelPath(modelPath.c_str());
compile_options.SetOutputModelPath(compiledModelPath.c_str());
std::cout << "Starting compile, this may take a few moments..." << std::endl;
Ort::Status compileStatus = Ort::CompileModel(env, compile_options);
if (compileStatus.IsOK())
{
// Calculate the duration in minutes / seconds / milliseconds
std::cout << "Model compiled successfully!" << std::endl;
isCompiledModelAvailable = std::filesystem::exists(compiledModelPath);
}
else
{
std::cerr << "Failed to compile model: " << compileStatus.GetErrorCode() << ", "
<< compileStatus.GetErrorMessage() << std::endl;
std::cerr << "Falling back to uncompiled model" << std::endl;
}
}
std::filesystem::path modelPathToUse = isCompiledModelAvailable ? compiledModelPath : modelPath;
model_path = "path to your original model"
compiled_model_path = "path to your compiled model"
if compiled_model_path.exists():
print("Using compiled model")
else:
print("No compiled model found, attempting to create compiled model at ", compiled_model_path)
model_compiler = ort.ModelCompiler(session_options, model_path)
print("Starting compile, this may take a few moments..." )
try:
model_compiler.compile_to_file(compiled_model_path)
print("Model compiled successfully")
except Exception as e:
print("Model compilation failed:", e)
print("Falling back to uncompiled model")
model_path_to_use = compiled_model_path if compiled_model_path.exists() else model_path
Esecuzione dell'inferenza
L'immagine di input viene convertita in formato di dati tensor e quindi viene eseguita l'inferenza. Sebbene questo sia tipico di tutto il codice che utilizza il runtime ONNX, la differenza in questo caso è che si tratta di ONNX Runtime direttamente tramite Windows ML. L'unico requisito consiste nell'aggiungere #include <winml/onnxruntime_cxx_api.h> al codice.
Vedere anche Convertire un modello con AI Toolkit for VS Code
Per informazioni di riferimento sulle API, vedere Struct Ort::Session, Ort::MemoryInfo struct, Ort::Value struct, Ort::AllocatorWithDefaultOptions struct, Ort::RunOptions struct.
using var session = new InferenceSession(modelPathToUse, sessionOptions);
Console.WriteLine("Preparing input ...");
// Load and preprocess image
var input = await PreprocessImageAsync(await LoadImageFileAsync(imagePath));
// Prepare input tensor
var inputName = session.InputMetadata.First().Key;
var inputTensor = new DenseTensor<float>(
input.ToArray(), // Use the DenseTensor<float> directly
new[] { 1, 3, 224, 224 }, // Shape of the tensor
false // isReversedStride should be explicitly set to false
);
// Bind inputs and run inference
var inputs = new List<NamedOnnxValue>
{
NamedOnnxValue.CreateFromTensor(inputName, inputTensor)
};
Console.WriteLine("Running inference ...");
var results = session.Run(inputs);
for (int i = 0; i < 40; i++)
{
results = session.Run(inputs);
}
// Extract output tensor
var outputName = session.OutputMetadata.First().Key;
var resultTensor = results.First(r => r.Name == outputName).AsEnumerable<float>().ToArray();
// Load labels and print results
var labels = LoadLabels(labelsPath);
PrintResults(labels, resultTensor);
Ort::Session session(env, modelPathToUse.c_str(), sessionOptions);
std::cout << "ResNet model loaded"<< std::endl;
// Load and Preprocess image
winrt::hstring imagePath{ dogImagePath.c_str()};
auto imageFrameResult = ResnetModelHelper::LoadImageFileAsync(imagePath);
auto inputTensorData = ResnetModelHelper::BindSoftwareBitmapAsTensor(imageFrameResult.get());
// Prepare input tensor
auto inputInfo = session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo();
auto inputType = inputInfo.GetElementType();
auto inputShape = std::array<int64_t, 4>{ 1, 3, 224, 224 };
auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
std::vector<uint8_t> rawInputBytes;
if (inputType == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16)
{
auto converted = ResnetModelHelper::ConvertFloat32ToFloat16(inputTensorData);
rawInputBytes.assign(reinterpret_cast<uint8_t*>(converted.data()),
reinterpret_cast<uint8_t*>(converted.data()) + converted.size() * sizeof(uint16_t));
}
else
{
rawInputBytes.assign(reinterpret_cast<uint8_t*>(inputTensorData.data()),
reinterpret_cast<uint8_t*>(inputTensorData.data()) +
inputTensorData.size() * sizeof(float));
}
OrtValue* ortValue = nullptr;
Ort::ThrowOnError(Ort::GetApi().CreateTensorWithDataAsOrtValue(memoryInfo, rawInputBytes.data(),
rawInputBytes.size(), inputShape.data(),
inputShape.size(), inputType, &ortValue));
Ort::Value inputTensor{ ortValue };
const int iterations = 20;
std::cout << "Running inference for " << iterations << " iterations" << std::endl;
auto before = std::chrono::high_resolution_clock::now();
for (int i = 0; i < iterations; i++)
{
//std::cout << "---------------------------------------------" << std::endl;
//std::cout << "Running inference for " << i + 1 << "th time" << std::endl;
//std::cout << "---------------------------------------------"<< std::endl;
std::cout << ".";
// Get input/output names
Ort::AllocatorWithDefaultOptions allocator;
auto inputName = session.GetInputNameAllocated(0, allocator);
auto outputName = session.GetOutputNameAllocated(0, allocator);
std::vector<const char*> inputNames = {inputName.get()};
std::vector<const char*> outputNames = {outputName.get()};
// Run inference
auto outputTensors =
session.Run(Ort::RunOptions{nullptr}, inputNames.data(), &inputTensor, 1, outputNames.data(), 1);
// Extract results
std::vector<float> results;
if (inputType == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16)
{
auto outputData = outputTensors[0].GetTensorMutableData<uint16_t>();
size_t outputSize = outputTensors[0].GetTensorTypeAndShapeInfo().GetElementCount();
std::vector<uint16_t> outputFloat16(outputData, outputData + outputSize);
results = ResnetModelHelper::ConvertFloat16ToFloat32(outputFloat16);
}
else
{
auto outputData = outputTensors[0].GetTensorMutableData<float>();
size_t outputSize = outputTensors[0].GetTensorTypeAndShapeInfo().GetElementCount();
results.assign(outputData, outputData + outputSize);
}
if (i == iterations - 1)
{
// Load labels and print result
std::cout << "\nOutput for the last iteration"<< std::endl;
auto labels = ResnetModelHelper::LoadLabels(labelsPath);
ResnetModelHelper::PrintResults(labels, results);
}
inputName.release();
outputName.release();
}
std::cout << "---------------------------------------------" << std::endl;
def load_labels(label_file):
with open(label_file, 'r') as f:
labels = [line.strip().split(',')[1] for line in f.readlines()]
return labels
def load_and_preprocess_image(image_path):
img = Image.open(image_path)
if img.mode != 'RGB':
img = img.convert('RGB')
img = img.resize((224, 224))
means = np.array([0.485, 0.456, 0.406]).reshape(1, 1, 3)
stds = np.array([0.229, 0.224, 0.225]).reshape(1, 1, 3)
img_array = np.array(img).astype(np.float32)
img_array = (img_array - means) / stds
img_array = img_array.transpose((2, 0, 1))
img_array = np.expand_dims(img_array, axis=0)
return img_array.astype(np.float32)
session = ort.InferenceSession(
model_path_to_use,
sess_options=session_options,
)
labels = load_labels("path to your labels file")
images_folder = "path to your images' folder"
for image_file in images_folder.iterdir():
print(f"Running inference on image: {image_file}")
print("Preparing input ...")
img_array = load_and_preprocess_image(image_file)
print("Running inference ...")
input_name = session.get_inputs()[0].name
results = session.run(None, {input_name: img_array})[0]
# See the next section for this function's definition
print_results(labels, results, is_logit=False)
Elaborazione post-produzione
La funzione softmax viene applicata all'output non elaborato restituito, e i dati delle etichette vengono usati per mappare e stampare i nomi con le cinque probabilità più elevate.
private static void PrintResults(IList<string> labels, IReadOnlyList<float> results)
{
// Apply softmax to the results
float maxLogit = results.Max();
var expScores = results.Select(r => MathF.Exp(r - maxLogit)).ToList(); // stability with maxLogit
float sumExp = expScores.Sum();
var softmaxResults = expScores.Select(e => e / sumExp).ToList();
// Get top 5 results
IEnumerable<(int Index, float Confidence)> topResults = softmaxResults
.Select((value, index) => (Index: index, Confidence: value))
.OrderByDescending(x => x.Confidence)
.Take(5);
// Display results
Console.WriteLine("Top Predictions:");
Console.WriteLine("-------------------------------------------");
Console.WriteLine("{0,-32} {1,10}", "Label", "Confidence");
Console.WriteLine("-------------------------------------------");
foreach (var result in topResults)
{
Console.WriteLine("{0,-32} {1,10:P2}", labels[result.Index], result.Confidence);
}
Console.WriteLine("-------------------------------------------");
}
void PrintResults(const std::vector<std::string>& labels, const std::vector<float>& results) {
// Apply softmax to the results
float maxLogit = *std::max_element(results.begin(), results.end());
std::vector<float> expScores;
float sumExp = 0.0f;
for (float r : results) {
float expScore = std::exp(r - maxLogit);
expScores.push_back(expScore);
sumExp += expScore;
}
std::vector<float> softmaxResults;
for (float e : expScores) {
softmaxResults.push_back(e / sumExp);
}
// Get top 5 results
std::vector<std::pair<int, float>> indexedResults;
for (size_t i = 0; i < softmaxResults.size(); ++i) {
indexedResults.emplace_back(static_cast<int>(i), softmaxResults[i]);
}
std::sort(indexedResults.begin(), indexedResults.end(), [](const auto& a, const auto& b) {
return a.second > b.second;
});
indexedResults.resize(std::min<size_t>(5, indexedResults.size()));
// Display results
std::cout << "Top Predictions:\n";
std::cout << "-------------------------------------------\n";
std::cout << std::left << std::setw(32) << "Label" << std::right << std::setw(10) << "Confidence\n";
std::cout << "-------------------------------------------\n";
for (const auto& result : indexedResults) {
std::cout << std::left << std::setw(32) << labels[result.first]
<< std::right << std::setw(10) << std::fixed << std::setprecision(2) << (result.second * 100) << "%\n";
}
std::cout << "-------------------------------------------\n";
}
def print_results(labels, results, is_logit=False):
def softmax(x):
exp_x = np.exp(x - np.max(x))
return exp_x / exp_x.sum()
results = results.flatten()
if is_logit:
results = softmax(results)
top_k = 5
top_indices = np.argsort(results)[-top_k:][::-1]
print("Top Predictions:")
print("-"*50)
print(f"{'Label':<32} {'Confidence':>10}")
print("-"*50)
for i in top_indices:
print(f"{labels[i]:<32} {results[i]*100:>10.2f}%")
print("-"*50)
Risultato
Di seguito è riportato un esempio del tipo di output previsto.
285, Egyptian cat with confidence of 0.904274
281, tabby with confidence of 0.0620204
282, tiger cat with confidence of 0.0223081
287, lynx with confidence of 0.00119624
761, remote control with confidence of 0.000487919
Esempi di codice completi
Gli esempi di codice completi sono disponibili nel repository GitHub WindowsAppSDK-Samples. Vedi WindowsML.