次の方法で共有


Databricks Runtime 5.0 ML (サポート期間終了)

Note

この Databricks Runtime バージョンのサポートは終了しました。 サポート終了日については、「サポート終了の履歴」を参照してください。 サポートされている Databricks Runtime のすべてのバージョンについては、「Databricks Runtime リリース ノートのバージョンと互換性」を参照してください。

Databricks は、2018 年 11 月にこのバージョンをリリースしました。

Databricks Runtime 5.0 ML は、機械学習とデータ サイエンスにすぐに利用できる環境を提供します。 TensorFlow、Keras、XGBoost など、多くの一般的なライブラリが含まれています。 Horovod を使用した TensorFlow 分散トレーニングもサポートします。

Databricks Runtime ML クラスターを作成する手順などの詳細については、「Databricks での AI と Machine Learning」を参照してください。

新機能

Databricks Runtime 5.0 ML は Databricks Runtime 5.0 の上に構築されています。 Databricks Runtime 5.0 の新機能については、「Databricks Runtime 5.0 (サポート期間終了)」のリリース ノートをご覧ください。 Databricks Runtime 5.0 の新機能に加えて、Databricks Runtime 5.0 ML には次の新機能が含まれています。

  • HorovodRunner: Horovod を使用して分散ディープ ラーニング トレーニング ジョブを実行します。
  • Conda: パッケージ管理のサポート。
  • MLeap: 統合。
  • GraphFrames: 統合。

注意

Databricks Runtime ML リリースでは、Databricks Runtime の基本リリースのすべてのメンテナンス更新プログラムが取得されます。 すべてのメンテナンス更新プログラムのリストについては、「Databricks ランタイムのメンテナンス更新プログラム (アーカイブ済み)」を参照してください。

システム環境

Databricks Runtime 5.0 と Databricks Runtime 5.0 ML のシステム環境の違いは次のとおりです。

  • Python: Python 2 クラスターの場合は 2.7.15、Python 3 クラスターの場合は 3.6.5。
  • GPU クラスターの場合、NVIDIA GPU ライブラリは次のとおりです。
    • Tesla ドライバー 396.44
    • CUDA 9.2
    • CUDNN 7.2.1

ライブラリ

このセクションでは、Databricks Runtime 5.0 に含まれるライブラリと Databricks Runtime 5.0 ML に含まれているライブラリの違いを示します。

Python ライブラリ

Databricks Runtime 5.0 ML では Python パッケージ管理に Conda を使用します。 Conda パッケージ マネージャーを使用してインストールされた Python パッケージとバージョンの完全な一覧を次に示します。

ライブラリ Version ライブラリ Version ライブラリ Version
absl-py 0.6.1 argparse 1.4.0 asn1crypto 0.24.0
astor 0.7.1 backports-abc 0.5 backports.functools-lru-cache 1.5
backports.weakref 1.0.post1 bcrypt 3.1.4 bleach 2.1.3
boto 2.48.0 boto3 1.7.62 botocore 1.10.62
certifi 2018.04.16 cffi 1.11.5 chardet 3.0.4
cloudpickle 0.5.3 colorama 0.3.9 configparser 3.5.0
cryptography 2.2.2 cycler 0.10.0 Cython 0.28.2
decorator 4.3.0 docutils 0.14 entrypoints 0.2.3
enum34 1.1.6 et-xmlfile 1.0.1 funcsigs 1.0.2
functools32 3.2.3-2 fusepy 2.0.4 futures 3.2.0
gast 0.2.0 grpcio 1.12.1 h5py 2.8.0
horovod 0.15.0 html5lib 1.0.1 idna 2.6
ipaddress 1.0.22 ipython 5.7.0 ipython_genutils 0.2.0
jdcal 1.4 Jinja2 2.10 jmespath 0.9.3
jsonschema 2.6.0 jupyter-client 5.2.3 jupyter-core 4.4.0
Keras 2.2.4 Keras-Applications 1.0.6 Keras-Preprocessing 1.0.5
kiwisolver 1.0.1 linecache2 1.0.0 llvmlite 0.23.1
lxml 4.2.1 Markdown 3.0.1 MarkupSafe 1.0
matplotlib 2.2.2 mistune 0.8.3 mleap 0.8.1
mock 2.0.0 msgpack 0.5.6 nbconvert 5.3.1
nbformat 4.4.0 nose 1.3.7 nose-exclude 0.5.0
numba 0.38.0+0.g2a2b772fc.dirty numpy 1.14.3 olefile 0.45.1
openpyxl 2.5.3 pandas 0.23.0 pandocfilters 1.4.2
paramiko 2.4.1 pathlib2 2.3.2 patsy 0.5.0
pbr 5.1.0 pexpect 4.5.0 pickleshare 0.7.4
Pillow 5.1.0 pip 10.0.1 ply 3.11
prompt-toolkit 1.0.15 protobuf 3.6.1 psycopg2 2.7.5
ptyprocess 0.5.2 pyarrow 0.8.0 pyasn1 0.4.4
pycparser 2.18 Pygments 2.2.0 PyNaCl 1.3.0
pyOpenSSL 18.0.0 pyparsing 2.2.0 PySocks 1.6.8
Python 2.7.15 python-dateutil 2.7.3 pytz 2018.4
PyYAML 3.12 pyzmq 17.0.0 requests 2.18.4
s3transfer 0.1.13 scandir 1.7 scikit-learn 0.19.1
scipy 1.1.0 seaborn 0.8.1 setuptools 39.1.0
simplegeneric 0.8.1 singledispatch 3.4.0.3 6 1.11.0
statsmodels 0.9.0 subprocess32 3.5.3 TensorBoard 1.10.0
tensorflow 1.10.0 termcolor 1.1.0 testpath 0.3.1
tornado 5.0.2 traceback2 1.4.0 traitlets 4.3.2
unittest2 1.1.0 urllib3 1.22 virtualenv 16.0.0
wcwidth 0.1.7 webencodings 0.5.1 Werkzeug 0.14.1
wheel 0.31.1 wrapt 1.10.11 wsgiref 0.1.2

さらに、次の Spark パッケージには Python モジュールが含まれています。

Spark パッケージ Python モジュール Version
tensorframes tensorframes 0.5.0-s_2.11
graphframes graphframes 0.6.0-db3-spark2.4
spark-deep-learning sparkdl 1.3.0-db2-spark2.4

R ライブラリ

R ライブラリは Databricks Runtime 5.0 の R ライブラリと同じです。

Java と Scala のライブラリ (Scala 2.11 クラスター)

Databricks Runtime 5.0 ML には、Databricks Runtime 5.0 の Java と Scala のライブラリに加え、次の JAR が含まれています。

グループ ID 成果物 ID Version
com.databricks spark-deep-learning 1.3.0-db2-spark2.4
org.tensorframes tensorframes 0.5.0-s_2.11
org.graphframes graphframes_2.11 0.6.0-db3-spark2.4
org.tensorflow libtensorflow 1.10.0
org.tensorflow libtensorflow_jni 1.10.0
org.tensorflow spark-tensorflow-connector_2.11 1.10.0-spark2.4-001
org.tensorflow tensorflow 1.10.0
ml.dmlc xgboost4j 0.80
ml.dmlc xgboost4j-spark 0.80
ml.combust.mleap mleap-databricks-runtime_2.11 0.13.0-SNAPSHOT