編集

次の方法で共有


エネルギー供給の最適化

Azure Batch
Azure Blob Storage
Azure Data Science Virtual Machines
Azure Queue Storage
Azure SQL データベース

ソリューションのアイデア

この記事ではソリューションのアイデアについて説明します。 クラウド アーキテクトはこのガイダンスを使用すると、このアーキテクチャの一般的な実装の主要コンポーネントを視覚化しやすくなります。 ワークロードの特定の要件に適合する、適切に設計されたソリューションを設計するための出発点として、この記事を使用してください。

このソリューションでは、外部のオープンソース ツールを適用した、Azure ベースのスマート ソリューションを提供します。これにより、エネルギー グリッドのさまざまなエネルギー リソースから確保する最適なエネルギー ユニットが決定されます。 目標は、エネルギー需要を満たすと同時に、確保によって発生する全体的なコストを最小限に抑えることです。

アーキテクチャ

エネルギー供給の最適化を示すアーキテクチャ図。

このアーキテクチャの Visio ファイルをダウンロードします。

データフロー

  1. サンプルデータは、新しくデプロイされた Azure Web ジョブによってストリーミングされます。 Web ジョブは、Azure SQL のリソースに関連するデータを使用して、シミュレートされたデータを生成します。
  2. データ シミュレーターは、このシミュレートされたデータを Azure Storage にフィードし、ストレージ キューにメッセージを書き込みます。これは、ソリューション フローの残りの部分で使用されます。
  3. 別の Web ジョブがストレージ キューを監視し、キュー内のメッセージが使用可能になると Azure Batch ジョブを開始します。
  4. Azure Batch サービスをデータ サイエンス仮想マシンと共に使用して、受信した入力を考慮して特定のリソースの種類からエネルギー供給を最適化します。
  5. Azure SQL Database は、Azure Batch サービスから受け取った最適化の結果を格納するために使用されます。 これらの結果は、Power BI ダッシュボードで使用されます。
  6. 最後に、結果を視覚化するために Power BI が使用されます。

コンポーネント

このアーキテクチャの実装に使用される主要テクノロジ:

シナリオの詳細

エネルギー グリッドは、エネルギー消費者だけでなく、さまざまな種類のエネルギー供給、取引、貯蔵コンポーネントで構成されています。変電所は電力負荷を受け入れ、過剰な電力をエクスポートします。電池はエネルギーを放出したり、将来使用できるように蓄えたりできます。風力発電基地やソーラー パネル (セルフ スケジュール発電機)、マイクロタービン (指令可能発電機)、デマンド レスポンス入札のすべてが、グリッド内の消費者の需要を満たすことに関わっています。

さまざまな種類のリソースの要請のコストは異なりますが、各リソースタイプの容量と物理特性によってリソースの提供が制限されます。 これらのすべての制約に対して、スマート グリッド オペレーターが取り組む必要がある課題は、各リソース種類が一定期間にわたって確保する必要があるエネルギーの量です。 これにより、グリッドからの予測エネルギー需要が満たされます。

考えられるユース ケース

このソリューションは、Pyomo や CBC などの外部ツールに対応して、混合整数線形計画法などの大規模な数値最適化の問題を解決し、Azure Virtual Machine の Azure Batch 上で複数の最適化タスクを並列化する Azure の能力を実演します。 関連するその他の製品には、Azure Blob Storage、Azure Queue Storage、Azure Web アプリ、Azure SQL Database、および Power BI が含まれます。

次のステップ

製品ドキュメント:

Microsoft Learn モジュール: