binomial_test_fl()
Applies to: ✅ Microsoft Fabric ✅ Azure Data Explorer
The function binomial_test_fl()
is a UDF (user-defined function) that performs the binomial test.
Prerequisites
- The Python plugin must be enabled on the cluster. This is required for the inline Python used in the function.
- The Python plugin must be enabled on the database. This is required for the inline Python used in the function.
Syntax
T | invoke binomial_test_fl(
successes,
trials [,
success_prob [,
alt_hypotheis ]])
Learn more about syntax conventions.
Parameters
Name | Type | Required | Description |
---|---|---|---|
successes | string |
✔️ | The name of the column containing the number of success results. |
trials | string |
✔️ | The name of the column containing the total number of trials. |
p_value | string |
✔️ | The name of the column to store the results. |
success_prob | real |
The success probability. The default is 0.5. | |
alt_hypotheis | string |
The alternate hypothesis can be two-sided , greater , or less . The default is two-sided . |
Function definition
You can define the function by either embedding its code as a query-defined function, or creating it as a stored function in your database, as follows:
Define the function using the following let statement. No permissions are required.
Important
A let statement can't run on its own. It must be followed by a tabular expression statement. To run a working example of binomial_test_fl()
, see Example.
let binomial_test_fl = (tbl:(*), successes:string, trials:string, p_value:string, success_prob:real=0.5, alt_hypotheis:string='two-sided')
{
let kwargs = bag_pack('successes', successes, 'trials', trials, 'p_value', p_value, 'success_prob', success_prob, 'alt_hypotheis', alt_hypotheis);
let code = ```if 1:
from scipy import stats
successes = kargs["successes"]
trials = kargs["trials"]
p_value = kargs["p_value"]
success_prob = kargs["success_prob"]
alt_hypotheis = kargs["alt_hypotheis"]
def func(row, prob, h1):
pv = stats.binom_test(row[successes], row[trials], p=prob, alternative=h1)
return pv
result = df
result[p_value] = df.apply(func, axis=1, args=(success_prob, alt_hypotheis), result_type="expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.
Example
The following example uses the invoke operator to run the function.
To use a query-defined function, invoke it after the embedded function definition.
let binomial_test_fl = (tbl:(*), successes:string, trials:string, p_value:string, success_prob:real=0.5, alt_hypotheis:string='two-sided')
{
let kwargs = bag_pack('successes', successes, 'trials', trials, 'p_value', p_value, 'success_prob', success_prob, 'alt_hypotheis', alt_hypotheis);
let code = ```if 1:
from scipy import stats
successes = kargs["successes"]
trials = kargs["trials"]
p_value = kargs["p_value"]
success_prob = kargs["success_prob"]
alt_hypotheis = kargs["alt_hypotheis"]
def func(row, prob, h1):
pv = stats.binom_test(row[successes], row[trials], p=prob, alternative=h1)
return pv
result = df
result[p_value] = df.apply(func, axis=1, args=(success_prob, alt_hypotheis), result_type="expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
datatable(id:string, x:int, n:int) [
'Test #1', 3, 5,
'Test #2', 5, 5,
'Test #3', 3, 15
]
| extend p_val=0.0
| invoke binomial_test_fl('x', 'n', 'p_val', success_prob=0.2, alt_hypotheis='greater')
Output
id | x | n | p_val |
---|---|---|---|
Test #1 | 3 | 5 | 0.05792 |
Test #2 | 5 | 5 | 0.00032 |
Test #3 | 3 | 15 | 0.601976790745087 |