series_downsample_fl()
Applies to: ✅ Microsoft Fabric ✅ Azure Data Explorer ✅ Azure Monitor ✅ Microsoft Sentinel
The function series_downsample_fl()
is a user-defined function (UDF) that downsamples a time series by an integer factor. This function takes a table containing multiple time series (dynamic numerical array), and downsamples each series. The output contains both the coarser series and its respective times array. To avoid aliasing, the function applies a simple low pass filter on each series before subsampling.
Syntax
T | invoke series_downsample_fl(
t_col,
y_col,
ds_t_col,
ds_y_col,
sampling_factor)
Learn more about syntax conventions.
Parameters
Name | Type | Required | Description |
---|---|---|---|
t_col | string |
✔️ | The name of the column that contains the time axis of the series to downsample. |
y_col | string |
✔️ | The name of the column that contains the series to downsample. |
ds_t_col | string |
✔️ | The name of the column to store the down sampled time axis of each series. |
ds_y_col | string |
✔️ | The name of the column to store the down sampled series. |
sampling_factor | int |
✔️ | An integer specifying the required down sampling. |
Function definition
You can define the function by either embedding its code as a query-defined function, or creating it as a stored function in your database, as follows:
Define the function using the following let statement. No permissions are required.
Important
A let statement can't run on its own. It must be followed by a tabular expression statement. To run a working example of series_downsample_fl()
, see Example.
let series_downsample_fl=(tbl:(*), t_col:string, y_col:string, ds_t_col:string, ds_y_col:string, sampling_factor:int)
{
tbl
| extend _t_ = column_ifexists(t_col, dynamic(0)), _y_ = column_ifexists(y_col, dynamic(0))
| extend _y_ = series_fir(_y_, repeat(1, sampling_factor), true, true) // apply a simple low pass filter before sub-sampling
| mv-apply _t_ to typeof(DateTime), _y_ to typeof(double) on
(extend rid=row_number()-1
| where rid % sampling_factor == ceiling(sampling_factor/2.0)-1 // sub-sampling
| summarize _t_ = make_list(_t_), _y_ = make_list(_y_))
| extend cols = bag_pack(ds_t_col, _t_, ds_y_col, _y_)
| project-away _t_, _y_
| evaluate bag_unpack(cols)
};
// Write your query to use the function here.
Example
The following example uses the invoke operator to run the function.
To use a query-defined function, invoke it after the embedded function definition.
let series_downsample_fl=(tbl:(*), t_col:string, y_col:string, ds_t_col:string, ds_y_col:string, sampling_factor:int)
{
tbl
| extend _t_ = column_ifexists(t_col, dynamic(0)), _y_ = column_ifexists(y_col, dynamic(0))
| extend _y_ = series_fir(_y_, repeat(1, sampling_factor), true, true) // apply a simple low pass filter before sub-sampling
| mv-apply _t_ to typeof(DateTime), _y_ to typeof(double) on
(extend rid=row_number()-1
| where rid % sampling_factor == ceiling(sampling_factor/2.0)-1 // sub-sampling
| summarize _t_ = make_list(_t_), _y_ = make_list(_y_))
| extend cols = bag_pack(ds_t_col, _t_, ds_y_col, _y_)
| project-away _t_, _y_
| evaluate bag_unpack(cols)
};
demo_make_series1
| make-series num=count() on TimeStamp step 1h by OsVer
| invoke series_downsample_fl('TimeStamp', 'num', 'coarse_TimeStamp', 'coarse_num', 4)
| render timechart with(xcolumn=coarse_TimeStamp, ycolumns=coarse_num)
Output
The time series downsampled by 4:
For reference, here is the original time series (before downsampling):
demo_make_series1
| make-series num=count() on TimeStamp step 1h by OsVer
| render timechart with(xcolumn=TimeStamp, ycolumns=num)