編集

次の方法で共有


series_downsample_fl()

Applies to: ✅ Microsoft FabricAzure Data ExplorerAzure MonitorMicrosoft Sentinel

The function series_downsample_fl() is a user-defined function (UDF) that downsamples a time series by an integer factor. This function takes a table containing multiple time series (dynamic numerical array), and downsamples each series. The output contains both the coarser series and its respective times array. To avoid aliasing, the function applies a simple low pass filter on each series before subsampling.

Syntax

T | invoke series_downsample_fl(t_col, y_col, ds_t_col, ds_y_col, sampling_factor)

Learn more about syntax conventions.

Parameters

Name Type Required Description
t_col string ✔️ The name of the column that contains the time axis of the series to downsample.
y_col string ✔️ The name of the column that contains the series to downsample.
ds_t_col string ✔️ The name of the column to store the down sampled time axis of each series.
ds_y_col string ✔️ The name of the column to store the down sampled series.
sampling_factor int ✔️ An integer specifying the required down sampling.

Function definition

You can define the function by either embedding its code as a query-defined function, or creating it as a stored function in your database, as follows:

Define the function using the following let statement. No permissions are required.

Important

A let statement can't run on its own. It must be followed by a tabular expression statement. To run a working example of series_downsample_fl(), see Example.

let series_downsample_fl=(tbl:(*), t_col:string, y_col:string, ds_t_col:string, ds_y_col:string, sampling_factor:int)
{
    tbl
    | extend _t_ = column_ifexists(t_col, dynamic(0)), _y_ = column_ifexists(y_col, dynamic(0))
    | extend _y_ = series_fir(_y_, repeat(1, sampling_factor), true, true)    //  apply a simple low pass filter before sub-sampling
    | mv-apply _t_ to typeof(DateTime), _y_ to typeof(double) on
    (extend rid=row_number()-1
    | where rid % sampling_factor == ceiling(sampling_factor/2.0)-1                    //  sub-sampling
    | summarize _t_ = make_list(_t_), _y_ = make_list(_y_))
    | extend cols = bag_pack(ds_t_col, _t_, ds_y_col, _y_)
    | project-away _t_, _y_
    | evaluate bag_unpack(cols)
};
// Write your query to use the function here.

Example

The following example uses the invoke operator to run the function.

To use a query-defined function, invoke it after the embedded function definition.

let series_downsample_fl=(tbl:(*), t_col:string, y_col:string, ds_t_col:string, ds_y_col:string, sampling_factor:int)
{
    tbl
    | extend _t_ = column_ifexists(t_col, dynamic(0)), _y_ = column_ifexists(y_col, dynamic(0))
    | extend _y_ = series_fir(_y_, repeat(1, sampling_factor), true, true)    //  apply a simple low pass filter before sub-sampling
    | mv-apply _t_ to typeof(DateTime), _y_ to typeof(double) on
    (extend rid=row_number()-1
    | where rid % sampling_factor == ceiling(sampling_factor/2.0)-1                    //  sub-sampling
    | summarize _t_ = make_list(_t_), _y_ = make_list(_y_))
    | extend cols = bag_pack(ds_t_col, _t_, ds_y_col, _y_)
    | project-away _t_, _y_
    | evaluate bag_unpack(cols)
};
demo_make_series1
| make-series num=count() on TimeStamp step 1h by OsVer
| invoke series_downsample_fl('TimeStamp', 'num', 'coarse_TimeStamp', 'coarse_num', 4)
| render timechart with(xcolumn=coarse_TimeStamp, ycolumns=coarse_num)

Output

The time series downsampled by 4: Graph showing downsampling of a time series.

For reference, here is the original time series (before downsampling):

demo_make_series1
| make-series num=count() on TimeStamp step 1h by OsVer
| render timechart with(xcolumn=TimeStamp, ycolumns=num)

Graph showing the original time series, before downsampling