wilcoxon_test_fl()
Applies to: ✅ Microsoft Fabric ✅ Azure Data Explorer
The function wilcoxon_test_fl()
is a user-defined function (UDF) that performs the Wilcoxon Test.
Prerequisites
- The Python plugin must be enabled on the cluster. This is required for the inline Python used in the function.
- The Python plugin must be enabled on the database. This is required for the inline Python used in the function.
Syntax
T | invoke wilcoxon_test_fl()(
data,
test_statistic,
p_value)
Learn more about syntax conventions.
Parameters
Name | Type | Required | Description |
---|---|---|---|
data | string |
✔️ | The name of the column containing the data to be used for the test. |
test_statistic | string |
✔️ | The name of the column to store test statistic value for the results. |
p_value | string |
✔️ | The name of the column to store p-value for the results. |
Function definition
You can define the function by either embedding its code as a query-defined function, or creating it as a stored function in your database, as follows:
Define the function using the following let statement. No permissions are required.
Important
A let statement can't run on its own. It must be followed by a tabular expression statement. To run a working example of wilcoxon_test_fl()
, see Example.
let wilcoxon_test_fl = (tbl:(*), data:string, test_statistic:string, p_value:string)
{
let kwargs = bag_pack('data', data, 'test_statistic', test_statistic, 'p_value', p_value);
let code = ```if 1:
from scipy import stats
data = kargs["data"]
test_statistic = kargs["test_statistic"]
p_value = kargs["p_value"]
def func(row):
statistics = stats.wilcoxon(row[data])
return statistics[0], statistics[1]
result = df
result[[test_statistic, p_value]] = df.apply(func, axis=1, result_type = "expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.
Example
The following example uses the invoke operator to run the function.
To use a query-defined function, invoke it after the embedded function definition.
let wilcoxon_test_fl = (tbl:(*), data:string, test_statistic:string, p_value:string)
{
let kwargs = bag_pack('data', data, 'test_statistic', test_statistic, 'p_value', p_value);
let code = ```if 1:
from scipy import stats
data = kargs["data"]
test_statistic = kargs["test_statistic"]
p_value = kargs["p_value"]
def func(row):
statistics = stats.wilcoxon(row[data])
return statistics[0], statistics[1]
result = df
result[[test_statistic, p_value]] = df.apply(func, axis=1, result_type = "expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
datatable(id:string, sample1:dynamic) [
'Test #1', dynamic([23.64, 20.57, 20.42]),
'Test #2', dynamic([20.85, 21.89, 23.41]),
'Test #3', dynamic([20.13, 20.5, 21.7, 22.02])
]
| extend test_stat= 0.0, p_val = 0.0
| invoke wilcoxon_test_fl('sample1', 'test_stat', 'p_val') -->
Output
ID | sample1 | test_stat | p_val |
---|---|---|---|
Test #1 | [23.64, 20.57, 20.42] | 0, 0.10880943004054568 | |
Test #2 | [20.85, 21.89, 23.41] | 0, 0.10880943004054568 | |
Test #3 | [20.13, 20.5, 21.7, 22.02] | 0, 0.06788915486182899 |