StandardTrainersCatalog.PairwiseCoupling<TModel> メソッド
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
PairwiseCouplingTrainerで指定された二項分類推定器を使用して、ペアワイズ結合戦略を使用して多クラスターゲットを予測する、複数クラスのターゲットを作成しますbinaryEstimator
。
public static Microsoft.ML.Trainers.PairwiseCouplingTrainer PairwiseCoupling<TModel> (this Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<TModel>,TModel> binaryEstimator, string labelColumnName = "Label", bool imputeMissingLabelsAsNegative = false, Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> calibrator = default, int maximumCalibrationExampleCount = 1000000000) where TModel : class;
static member PairwiseCoupling : Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers * Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<'Model>, 'Model (requires 'Model : null)> * string * bool * Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> * int -> Microsoft.ML.Trainers.PairwiseCouplingTrainer (requires 'Model : null)
<Extension()>
Public Function PairwiseCoupling(Of TModel As Class) (catalog As MulticlassClassificationCatalog.MulticlassClassificationTrainers, binaryEstimator As ITrainerEstimator(Of ISingleFeaturePredictionTransformer(Of TModel), TModel), Optional labelColumnName As String = "Label", Optional imputeMissingLabelsAsNegative As Boolean = false, Optional calibrator As IEstimator(Of ISingleFeaturePredictionTransformer(Of ICalibrator)) = Nothing, Optional maximumCalibrationExampleCount As Integer = 1000000000) As PairwiseCouplingTrainer
型パラメーター
- TModel
モデルの型。 この型パラメーターは、通常から自動的 binaryEstimator
に推論されます。
パラメーター
多クラス分類カタログ トレーナー オブジェクト。
- binaryEstimator
- ITrainerEstimator<ISingleFeaturePredictionTransformer<TModel>,TModel>
ベース トレーナーとして使用されるバイナリ ITrainerEstimator<TTransformer,TModel> のインスタンス。
- labelColumnName
- String
ラベル列の名前。
- imputeMissingLabelsAsNegative
- Boolean
欠落しているラベルを、欠落したままにするのではなく、負のラベルを持つものとして扱うかどうか。
- calibrator
- IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>
校正器。 校正器が明示的に指定されていない場合は、既定で Microsoft.ML.Calibrators.PlattCalibratorTrainer
- maximumCalibrationExampleCount
- Int32
校正器をトレーニングするインスタンスの数。
戻り値
例
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class PairwiseCoupling
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion.MapValueToKey("Label")
// Apply PairwiseCoupling multiclass meta trainer on top of
// binary trainer.
.Append(mlContext.MulticlassClassification.Trainers
.PairwiseCoupling(
mlContext.BinaryClassification.Trainers.SdcaLogisticRegression()));
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, " +
$"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Micro Accuracy: 0.90
// Macro Accuracy: 0.90
// Log Loss: 0.36
// Log Loss Reduction: 0.67
// Confusion table
// ||========================
// PREDICTED || 0 | 1 | 2 | Recall
// TRUTH ||========================
// 0 || 150 | 0 | 10 | 0.9375
// 1 || 0 | 166 | 11 | 0.9379
// 2 || 15 | 15 | 133 | 0.8160
// ||========================
// Precision ||0.9091 |0.9171 |0.8636 |
}
// Generates random uniform doubles in [-0.5, 0.5)
// range with labels 1, 2 or 3.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine(
$"Log Loss Reduction: {metrics.LogLossReduction:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
注釈
ペアワイズ結合 (PKPD) 戦略では、二項分類アルゴリズムを使用して、クラスのペアごとに 1 つの分類子をトレーニングします。 予測は、これらの二項分類子を実行し、予測されたバイナリ分類子の数をカウントして各クラスのスコアを計算することによって実行されます。 予測は、最も高いスコアを持つクラスです。