次の方法で共有


TimeSeriesCatalog.ForecastBySsa メソッド

定義

一変量時系列予測のための単数スペクトル分析 (SSA) モデル。 モデルの詳細については、 を http://arxiv.org/pdf/1206.6910.pdf参照してください。

public static Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator ForecastBySsa (this Microsoft.ML.ForecastingCatalog catalog, string outputColumnName, string inputColumnName, int windowSize, int seriesLength, int trainSize, int horizon, bool isAdaptive = false, float discountFactor = 1, Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod rankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, int? rank = default, int? maxRank = default, bool shouldStabilize = true, bool shouldMaintainInfo = false, Microsoft.ML.Transforms.TimeSeries.GrowthRatio? maxGrowth = default, string confidenceLowerBoundColumn = default, string confidenceUpperBoundColumn = default, float confidenceLevel = 0.95, bool variableHorizon = false);
static member ForecastBySsa : Microsoft.ML.ForecastingCatalog * string * string * int * int * int * int * bool * single * Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod * Nullable<int> * Nullable<int> * bool * bool * Nullable<Microsoft.ML.Transforms.TimeSeries.GrowthRatio> * string * string * single * bool -> Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator
<Extension()>
Public Function ForecastBySsa (catalog As ForecastingCatalog, outputColumnName As String, inputColumnName As String, windowSize As Integer, seriesLength As Integer, trainSize As Integer, horizon As Integer, Optional isAdaptive As Boolean = false, Optional discountFactor As Single = 1, Optional rankSelectionMethod As RankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, Optional rank As Nullable(Of Integer) = Nothing, Optional maxRank As Nullable(Of Integer) = Nothing, Optional shouldStabilize As Boolean = true, Optional shouldMaintainInfo As Boolean = false, Optional maxGrowth As Nullable(Of GrowthRatio) = Nothing, Optional confidenceLowerBoundColumn As String = Nothing, Optional confidenceUpperBoundColumn As String = Nothing, Optional confidenceLevel As Single = 0.95, Optional variableHorizon As Boolean = false) As SsaForecastingEstimator

パラメーター

catalog
ForecastingCatalog

カタログ。

outputColumnName
String

の変換に起因する列の inputColumnName名前。

inputColumnName
String

変換する列の名前。 に設定すると null、 の outputColumnName 値がソースとして使用されます。 ベクトルには、最初の 3 つの値として Alert、Raw Score、P-Value が含まれています。

windowSize
Int32

軌道行列を構築するための系列上のウィンドウの長さ (パラメーター L)。

seriesLength
Int32

モデリングのためにバッファーに保持される系列の長さ (パラメーター N)。

trainSize
Int32

トレーニングに使用される最初の系列の長さ。

horizon
Int32

予測する値の数。

isAdaptive
Boolean

モデルがアダプティブかどうかを判断するフラグ。

discountFactor
Single

オンライン更新に使用される [0,1] の割引率。

rankSelectionMethod
RankSelectionMethod

ランクの選択方法。

rank
Nullable<Int32>

SSA プロジェクションに使用されるサブスペースの目的のランク (パラメーター r)。 このパラメーターは、[1, windowSize] の範囲内である必要があります。 null に設定すると、ランクは予測エラー最小化に基づいて自動的に決定されます。

maxRank
Nullable<Int32>

ランク選択プロセス中に考慮される最大ランク。 指定しない場合 (つまり null に設定)、windowSize - 1 に設定されます。

shouldStabilize
Boolean

モデルを安定させる必要があるかどうかを決定するフラグ。

shouldMaintainInfo
Boolean

モデルのメタ情報を維持する必要があるかどうかを判断するフラグ。

maxGrowth
Nullable<GrowthRatio>

指数傾向の最大成長。

confidenceLowerBoundColumn
String

信頼区間下限列の名前。 指定しない場合、信頼区間は計算されません。

confidenceUpperBoundColumn
String

信頼区間の上限列の名前。 指定しない場合、信頼区間は計算されません。

confidenceLevel
Single

予測の信頼度レベル。

variableHorizon
Boolean

トレーニング後 (予測時) に horizon が変更される場合は、これを true に設定します。

戻り値

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class Forecasting
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot) and then does forecasting.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern.
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup arguments.
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ForecastResult.Forecast);

            // Instantiate the forecasting model.
            var model = ml.Forecasting.ForecastBySsa(outputColumnName,
                inputColumnName, 5, 11, data.Count, 5);

            // Train.
            var transformer = model.Fit(dataView);

            // Forecast next five values.
            var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
                ForecastResult>(ml);

            var forecast = forecastEngine.Predict();

            Console.WriteLine($"Forecasted values:");
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // Forecasted values:
            // [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]

            // Update with new observations.
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));

            // Checkpoint.
            forecastEngine.CheckPoint(ml, "model.zip");

            // Load the checkpointed model from disk.
            // Load the model.
            ITransformer modelCopy;
            using (var file = File.OpenRead("model.zip"))
                modelCopy = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
                TimeSeriesData, ForecastResult>(ml);

            // Forecast with the checkpointed model loaded from disk.
            forecast = forecastEngineCopy.Predict();
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

            // Forecast with the original model(that was checkpointed to disk).
            forecast = forecastEngine.Predict();
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

        }

        class ForecastResult
        {
            public float[] Forecast { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class ForecastingWithConfidenceInternal
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot) and then does forecasting.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern.
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup arguments.
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ForecastResult.Forecast);

            // Instantiate the forecasting model.
            var model = ml.Forecasting.ForecastBySsa(outputColumnName,
                inputColumnName, 5, 11, data.Count, 5,
                confidenceLevel: 0.95f,
                confidenceLowerBoundColumn: "ConfidenceLowerBound",
                confidenceUpperBoundColumn: "ConfidenceUpperBound");

            // Train.
            var transformer = model.Fit(dataView);

            // Forecast next five values.
            var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
                ForecastResult>(ml);

            var forecast = forecastEngine.Predict();

            PrintForecastValuesAndIntervals(forecast.Forecast, forecast
                .ConfidenceLowerBound, forecast.ConfidenceUpperBound);
            // Forecasted values:
            // [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]
            // Confidence intervals:
            // [0.3451088 - 3.609343] [-0.7967533 - 2.83774] [-0.058467 - 3.579552] [1.61505 - 5.259968] [2.349299 - 6.183623]

            // Update with new observations.
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));

            // Checkpoint.
            forecastEngine.CheckPoint(ml, "model.zip");

            // Load the checkpointed model from disk.
            // Load the model.
            ITransformer modelCopy;
            using (var file = File.OpenRead("model.zip"))
                modelCopy = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
                TimeSeriesData, ForecastResult>(ml);

            // Forecast with the checkpointed model loaded from disk.
            forecast = forecastEngineCopy.Predict();
            PrintForecastValuesAndIntervals(forecast.Forecast, forecast
                .ConfidenceLowerBound, forecast.ConfidenceUpperBound);

            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
            // Confidence intervals:
            // [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]

            // Forecast with the original model(that was checkpointed to disk).
            forecast = forecastEngine.Predict();
            PrintForecastValuesAndIntervals(forecast.Forecast,
                forecast.ConfidenceLowerBound, forecast.ConfidenceUpperBound);

            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
            // Confidence intervals:
            // [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]
        }

        static void PrintForecastValuesAndIntervals(float[] forecast, float[]
            confidenceIntervalLowerBounds, float[] confidenceIntervalUpperBounds)
        {
            Console.WriteLine($"Forecasted values:");
            Console.WriteLine("[{0}]", string.Join(", ", forecast));
            Console.WriteLine($"Confidence intervals:");
            for (int index = 0; index < forecast.Length; index++)
                Console.Write($"[{confidenceIntervalLowerBounds[index]} -" +
                    $" {confidenceIntervalUpperBounds[index]}] ");
            Console.WriteLine();
        }

        class ForecastResult
        {
            public float[] Forecast { get; set; }
            public float[] ConfidenceLowerBound { get; set; }
            public float[] ConfidenceUpperBound { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

適用対象