TimeSeriesCatalog.ForecastBySsa メソッド
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
一変量時系列予測のための単数スペクトル分析 (SSA) モデル。 モデルの詳細については、 を http://arxiv.org/pdf/1206.6910.pdf参照してください。
public static Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator ForecastBySsa (this Microsoft.ML.ForecastingCatalog catalog, string outputColumnName, string inputColumnName, int windowSize, int seriesLength, int trainSize, int horizon, bool isAdaptive = false, float discountFactor = 1, Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod rankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, int? rank = default, int? maxRank = default, bool shouldStabilize = true, bool shouldMaintainInfo = false, Microsoft.ML.Transforms.TimeSeries.GrowthRatio? maxGrowth = default, string confidenceLowerBoundColumn = default, string confidenceUpperBoundColumn = default, float confidenceLevel = 0.95, bool variableHorizon = false);
static member ForecastBySsa : Microsoft.ML.ForecastingCatalog * string * string * int * int * int * int * bool * single * Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod * Nullable<int> * Nullable<int> * bool * bool * Nullable<Microsoft.ML.Transforms.TimeSeries.GrowthRatio> * string * string * single * bool -> Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator
<Extension()>
Public Function ForecastBySsa (catalog As ForecastingCatalog, outputColumnName As String, inputColumnName As String, windowSize As Integer, seriesLength As Integer, trainSize As Integer, horizon As Integer, Optional isAdaptive As Boolean = false, Optional discountFactor As Single = 1, Optional rankSelectionMethod As RankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, Optional rank As Nullable(Of Integer) = Nothing, Optional maxRank As Nullable(Of Integer) = Nothing, Optional shouldStabilize As Boolean = true, Optional shouldMaintainInfo As Boolean = false, Optional maxGrowth As Nullable(Of GrowthRatio) = Nothing, Optional confidenceLowerBoundColumn As String = Nothing, Optional confidenceUpperBoundColumn As String = Nothing, Optional confidenceLevel As Single = 0.95, Optional variableHorizon As Boolean = false) As SsaForecastingEstimator
パラメーター
- catalog
- ForecastingCatalog
カタログ。
- outputColumnName
- String
の変換に起因する列の inputColumnName
名前。
- inputColumnName
- String
変換する列の名前。 に設定すると null
、 の outputColumnName
値がソースとして使用されます。
ベクトルには、最初の 3 つの値として Alert、Raw Score、P-Value が含まれています。
- windowSize
- Int32
軌道行列を構築するための系列上のウィンドウの長さ (パラメーター L)。
- seriesLength
- Int32
モデリングのためにバッファーに保持される系列の長さ (パラメーター N)。
- trainSize
- Int32
トレーニングに使用される最初の系列の長さ。
- horizon
- Int32
予測する値の数。
- isAdaptive
- Boolean
モデルがアダプティブかどうかを判断するフラグ。
- discountFactor
- Single
オンライン更新に使用される [0,1] の割引率。
- rankSelectionMethod
- RankSelectionMethod
ランクの選択方法。
SSA プロジェクションに使用されるサブスペースの目的のランク (パラメーター r)。 このパラメーターは、[1, windowSize] の範囲内である必要があります。 null に設定すると、ランクは予測エラー最小化に基づいて自動的に決定されます。
- shouldStabilize
- Boolean
モデルを安定させる必要があるかどうかを決定するフラグ。
- shouldMaintainInfo
- Boolean
モデルのメタ情報を維持する必要があるかどうかを判断するフラグ。
- maxGrowth
- Nullable<GrowthRatio>
指数傾向の最大成長。
- confidenceLowerBoundColumn
- String
信頼区間下限列の名前。 指定しない場合、信頼区間は計算されません。
- confidenceUpperBoundColumn
- String
信頼区間の上限列の名前。 指定しない場合、信頼区間は計算されません。
- confidenceLevel
- Single
予測の信頼度レベル。
- variableHorizon
- Boolean
トレーニング後 (予測時) に horizon が変更される場合は、これを true に設定します。
戻り値
例
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;
namespace Samples.Dynamic
{
public static class Forecasting
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot) and then does forecasting.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern.
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup arguments.
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(ForecastResult.Forecast);
// Instantiate the forecasting model.
var model = ml.Forecasting.ForecastBySsa(outputColumnName,
inputColumnName, 5, 11, data.Count, 5);
// Train.
var transformer = model.Fit(dataView);
// Forecast next five values.
var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
ForecastResult>(ml);
var forecast = forecastEngine.Predict();
Console.WriteLine($"Forecasted values:");
Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
// Forecasted values:
// [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]
// Update with new observations.
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
// Checkpoint.
forecastEngine.CheckPoint(ml, "model.zip");
// Load the checkpointed model from disk.
// Load the model.
ITransformer modelCopy;
using (var file = File.OpenRead("model.zip"))
modelCopy = ml.Model.Load(file, out DataViewSchema schema);
// We must create a new prediction engine from the persisted model.
var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
TimeSeriesData, ForecastResult>(ml);
// Forecast with the checkpointed model loaded from disk.
forecast = forecastEngineCopy.Predict();
Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
// [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
// Forecast with the original model(that was checkpointed to disk).
forecast = forecastEngine.Predict();
Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
// [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
}
class ForecastResult
{
public float[] Forecast { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;
namespace Samples.Dynamic
{
public static class ForecastingWithConfidenceInternal
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot) and then does forecasting.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern.
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup arguments.
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(ForecastResult.Forecast);
// Instantiate the forecasting model.
var model = ml.Forecasting.ForecastBySsa(outputColumnName,
inputColumnName, 5, 11, data.Count, 5,
confidenceLevel: 0.95f,
confidenceLowerBoundColumn: "ConfidenceLowerBound",
confidenceUpperBoundColumn: "ConfidenceUpperBound");
// Train.
var transformer = model.Fit(dataView);
// Forecast next five values.
var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
ForecastResult>(ml);
var forecast = forecastEngine.Predict();
PrintForecastValuesAndIntervals(forecast.Forecast, forecast
.ConfidenceLowerBound, forecast.ConfidenceUpperBound);
// Forecasted values:
// [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]
// Confidence intervals:
// [0.3451088 - 3.609343] [-0.7967533 - 2.83774] [-0.058467 - 3.579552] [1.61505 - 5.259968] [2.349299 - 6.183623]
// Update with new observations.
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
forecastEngine.Predict(new TimeSeriesData(0));
// Checkpoint.
forecastEngine.CheckPoint(ml, "model.zip");
// Load the checkpointed model from disk.
// Load the model.
ITransformer modelCopy;
using (var file = File.OpenRead("model.zip"))
modelCopy = ml.Model.Load(file, out DataViewSchema schema);
// We must create a new prediction engine from the persisted model.
var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
TimeSeriesData, ForecastResult>(ml);
// Forecast with the checkpointed model loaded from disk.
forecast = forecastEngineCopy.Predict();
PrintForecastValuesAndIntervals(forecast.Forecast, forecast
.ConfidenceLowerBound, forecast.ConfidenceUpperBound);
// [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
// Confidence intervals:
// [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]
// Forecast with the original model(that was checkpointed to disk).
forecast = forecastEngine.Predict();
PrintForecastValuesAndIntervals(forecast.Forecast,
forecast.ConfidenceLowerBound, forecast.ConfidenceUpperBound);
// [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
// Confidence intervals:
// [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]
}
static void PrintForecastValuesAndIntervals(float[] forecast, float[]
confidenceIntervalLowerBounds, float[] confidenceIntervalUpperBounds)
{
Console.WriteLine($"Forecasted values:");
Console.WriteLine("[{0}]", string.Join(", ", forecast));
Console.WriteLine($"Confidence intervals:");
for (int index = 0; index < forecast.Length; index++)
Console.Write($"[{confidenceIntervalLowerBounds[index]} -" +
$" {confidenceIntervalUpperBounds[index]}] ");
Console.WriteLine();
}
class ForecastResult
{
public float[] Forecast { get; set; }
public float[] ConfidenceLowerBound { get; set; }
public float[] ConfidenceUpperBound { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}